
Poisson-based Tools for Flow Visualization
Janick Martinez Esturo∗ Maik Schulze Christian Rössl Holger Theisel

University of Magdeburg

ABSTRACT

This paper applies Poisson-based methods to assist in interactive
exploration of steady flow fields. Using data-driven deformations
we obtain flow-orthogonal and flow-tangential surfaces by a flux-
based optimization. Surfaces are positioned interactively and de-
formed in real-time according to local flow. The deformed surfaces
are particularly useful for defining seed structures. We show how
the same gradient-based computational framework can be applied
to obtain parametrizations of flow-aligned surfaces. This way it is
easy to define nontrivial seed structures for integration-based flow
visualization methods. Additionally, the flow-aligned parametriza-
tions are employed for view-independent surface-based LIC visual-
izations. We apply our method to a number of data sets to show the
effectiveness of our deformations and parametrization-based seed
extraction methods for interactive flow exploration.

Index Terms: Computer Graphics [I.3.5]: Computational Geom-
etry and Object Modeling—Geometric algorithms

1 INTRODUCTION

A variety of scientific, engineering, and medical application areas
study problems in which 3D flow phenomena play a key role for
their comprehension and solution. As problems of relevant size of-
ten do not permit an automatic analysis, the flow phenomena need
to be investigated by domain experts. An effective analysis re-
quires flow visualization techniques to process the oftentimes huge
amounts of data. In recent years, visualization experts have pro-
posed a variety of advanced and powerful flow visualization tech-
niques. For example, characteristic surfaces, such as stream sur-
faces, are an established visualization approach that is well-studied
in the research community. However, many important professional
engineering tools used in practice do rarely provide domain experts
with such advanced visualization techniques. In fact, a lot of tools
(like, e. g., the ANSYS CFD-Post c© package [2]) provide users with
only basic visualization techniques, e. g., iconic or glyph-based,
slice-based, or stream line or path line visualizations. Visualiza-
tions by characteristic surfaces are infrequently used in practice de-
spite their advantages over basic visualizations.

We believe that one reason for the less prominent representation
in professional tools is the more complex interaction that is required
for surface-based visualizations: a lot of methods exist for the au-
tomatic seeding of stream lines and only a few limited approaches
exist to automatically seed, e. g., stream surfaces. Stream surfaces
are usually defined by seed curves from which the surfaces are in-
tegrated. The exact placement of these curves is based on assump-
tions and experience of domain experts and is usually performed
manually. Most often the choice of seed curve geometry is very
limited, e. g., to simple straight line segments or circles. Moreover,
not every seed curve is suitable to define stream surfaces: in fact,
seed curves that the user erroneously positions tangentially to the
flow result in degenerate stream surfaces. These factors make di-
rect seed curve specification challenging in practice. Therefore, it

∗e-mail: martinez@isg.cs.ovgu.de

is necessary to provide users with additional interaction tools that
overcome limitations of seed curve manipulation in order to make
surface-based visualizations simpler to use in practice.

In contrast to existing methods that require seed curve manipu-
lation, our approach is based on direct interaction with entire sur-
faces that are near flow-aligned. We do not perform surface in-
tegration but instead propose an interactive surface deformation-
based method allowing free positioning of surfaces. This way we
achieve a more direct interaction with the resulting flow-aligned
surfaces. The set of flow-aligned surfaces under consideration does
not only contain flow-tangential surfaces, which correspond to clas-
sical stream surfaces, but also flow-orthogonal surfaces that can in
general not be obtained by a simple surface integration. Our ap-
proach is generalized to computing both types of surfaces by de-
formations that are steered by flux optimization criteria. Our flow-
tangential surfaces are particularly useful for interactive flow ex-
ploration. Flow-orthogonal surfaces are well-suited to provide seed
structures for integration-based methods, because every embedded
curve is flow-orthogonal by construction. These curves can be
obtained as iso-contours of special flow-aligned parametrizations.
Moreover, the same global parametrizations can further be used for,
e. g., texture-based visualization, and we show how they define an-
imated and view-independent LIC-like and illustrative renderings.

In this work we show that both, flow-aligning deformations and
parametrizations, can be computed efficiently and in a unified way
by a Poisson-based optimization framework. Poisson-based meth-
ods are well-known with many applications in image and geometry
processing. This is the first approach that applies this technique in
the context of flow visualization.

2 RELATED WORK

Flow-aligned orthogonal structures. Most related to the or-
thogonal surfaces that we compute by flux maximization are the re-
cently proposed as-perpendicular-as-possible surfaces (APAPs) by
Schulze et al. [32], who integrate along a scaled vector field to ob-
tain orthogonally aligned surfaces. In contrast to our method, APAP
surfaces cannot be positioned freely due to the integration-based
approach. We will further compare both approaches for orthog-
onal surfaces in this work. A simpler method that does not con-
sider energy minimization has been proposed before by Palmerius
et al. [26]. Additionally, orthogonal structures were used to im-
prove animation [3], to seed stream lines on two-manifolds [29],
and they are well-known in the computer vision community [10] in
the context of shape-from-shading. This paper introduces a flux-
optimizing and deformation-based method to extract both, flow-
orthogonal and flow-tangential surfaces. The classical approach to
computing the later is surface integration.

Flow-tangential surface integration. There is a large body
of research on stream surface integration as well as stream sur-
face rendering [28, 22]. In the field of flow visualization, the
seminal work of Hultquist [16] marks the foundation for the de-
velopment of stream surface integrators [34, 31]. We refer to the
survey by McLoughlin et al. [25] for an overview on stream sur-
face integration methods. More elaborate approaches for path sur-
face integration [30, 14], and streak and time surface integration
[36, 8, 19, 38, 37] have been proposed recently.

Flow exploration. Various methods have been proposed for
automatic stream line seeding, which is in contrast to stream sur-
face seeding that is generally performed by a manual search [25].
A dense set of stream surfaces can be selected automatically by
clustering local flow features [13]. Seeds for simpler stream rib-
bons and particles can be interactively moved around for real-time
exploration [20]. The method we propose also enables interactive
flow exploration with the difference that the user can directly ma-
nipulate entire surfaces.

Texture-based visualization. A classical technique to visual-
ize the flow on integral surfaces are texture-based methods, such as
line integral convolution (LIC) approaches. Recent methods range
from generation of texture atlases [23] to image-space techniques
[21] that can be frame-coherent [15]. The survey by Laramee
et al. [22] discusses the various techniques. We introduce LIC-
like flow structure visualizations and illustrations that are defined
by globally flow-aligned parametrizations. The method provides
frame-coherence and supports stream and path surfaces as well as
animation.

Poisson-based modeling. Poisson-based surface deforma-
tions were first proposed by Yu et al. [40]. They apply the idea
of Poisson-based image editing by Perez et al. [27] in the con-
text of geometric modeling. Using their basic technique a number
of geometry processing methods were proposed, e. g., user-defined
deformations [41], pose interpolation [39], and deformation trans-
fer [35, 41]. All these methods are based on similar Poisson-based
computations. They differ in the way local gradients are trans-
formed prior to reconstruction. We refer to the survey of Botsch
and Sorkine [7] for related linear deformation approaches. This
work shows how gradient transformations are determined in a data-
driven way to align surfaces to a flow field using deformations.

Before we present details of our approach we review the Pois-
son optimization method in general, which is required by both our
deformation and parametrization approach.

3 POISSON-BASED OPTIMIZATION

Given is a guidance vector field h in a two-manifold M with asso-
ciated gradient operator ∇. Then Poisson-based methods search for
the scalar field u on M whose gradient ∇u best fits h in least-squares
sense. Formally, the energy

e(u) =
∫
M
||∇u−h||2 dx (1)

is minimized. A computationally attractive and sufficient condition
for a minimum is given by the solution of Poisson’s elliptic linear
partial differential equation

∆ u = ∇
T h , (2)

which has to be solved subject to suitable boundary constraints (see,
e. g., [1]). In (2) ∆ denotes the Laplace-Beltrami operator on M,
which can be represented by ∆ = ∇T ∇, i. e., as the divergence of
the gradient.

In this work we discretize the surface M by a triangular mesh
(V,T) defined by a set V of m vertices vi with coordinates xi ∈ IR3

and a set T of n triangles t j. Scalar fields u are piecewise linear func-
tions on triangulated surfaces, i. e., on a triangle t j = (a,b,c) with
coefficients ui at the vertices vi we have u(x) = ∑i∈t j

φi
j(x)ui with

barycentric coordinates φi
j(x) as linear basis functions. The piece-

wise constant gradient field on t j is given by ∇u = ∑i∈t j
∇φi

j ui.
One way to compute the constant gradients ∇φi

j of the basis func-
tions is to solve the linear system(xa−xc)

T

(xb−xc)
T

n j
T

 (∇φa
j,∇φb

j,∇φc
j
)
=

1 0 −1
0 1 −1
0 0 0

Figure 1: Deformation principle. An initial surface mesh (•) is iter-
atively deformed by conceptually aligning each triangle individually
to the flow and reconstructing the mesh (•) from these transformed
gradients until the iteration converges to a flow aligned mesh (•).

(see, e. g., [7] for a derivation). Here n j is the unit normal of the
triangle. If all scalar field coefficients ui are stacked in a vector
u one can assemble a 3n×m gradient operator matrix G from the
basis function gradients such that Gu is the vector of stacked scalar
field gradients on each triangle.

Since the scalar field gradients on triangular meshes are constant
per triangle the integral of (1) simplifies to an area-weighted sum of
quadratic differences, and we can rewrite the integrated energy to

e(u) = ||Gu−h||2A = (Gu−h)TA (Gu−h) , (3)
where h is the vector of stacked guidance gradient field vectors per
triangle and A is a 3n×3n diagonal inner-product matrix of triangle
areas that performs the integration. Then the optimal scalar field
minimizing e(u) is obtained by solving the linear system ∇u e(u) =
0, which results in the system

GTA Gu = GTAh . (4)
This linear system is a discretization of the Poisson equation (2)
on triangular meshes with the discrete Laplace-Beltrami operator
matrix L=GTAG and the discrete divergence operator matrix D=
GTA. The matrix L is sparse and positive semi-definite.

For Poisson-based surface deformations the gradients of all three
scalar coordinate functions are modified, and the coordinates of the
deformed mesh are reconstructed by solving (4). More precisely, let
Y j be the 3×3 matrix of the mesh coordinate gradients of triangle
t j , YT =

(
YT

1 , · · · ,YT
n
)

the 3n× 3 matrix of all stacked gradients,
and XT = (x1, · · · ,xm) the n× 3 matrix of stacked mesh coordi-
nates such that Y = GX. Then the per-triangle gradients are mod-
ified using local gradient transformations T j to give Y′j = Y j TT

j .
Finally, the deformed mesh with coordinates X′, whose gradients
best conform to the transformed gradients in least-squares sense, is
reconstructed by solving

LX′ = DY′ . (5)
As the gradients are translation-invariant the coordinates of at least
one vertex need to be prescribed when solving this system.

Different applications rely on this general Poisson-based surface
reconstruction technique and differ only in the way the local trans-
formations T j are specified. Usually, the T j are combined rotation
and scaling operations [40, 35, 41, 39]. In this work we use a data-
driven specification of the local transformations T j to obtain either
flow-tangential or flow-orthogonal surfaces.

4 INTERACTIVE DEFORMATION-BASED FLOW ALIGNMENT

In this work we provide tools for the explorative analysis of 3D
steady vector fields v(x) over a spatial domain D. A popular and
well-studied family of methods for the visualization of vector fields
are integral surfaces. For steady vector fields these are usually
stream surfaces [25]. Stream surfaces are surfaces S ⊂ D that are
tangential to the flow, i. e., given the normal n(x) of the stream sur-
face the local flux condition n(x)Tv(x) = 0 holds for all points x on
S. Therefore, the total flux through a stream surface

f =
∫
S

n(x)Tv(x)dx

vanishes.
Stream surfaces are usually constructed by advancing front al-

gorithms that start at seed curves, such as straight line segments,

which are defined by domain experts [25]. However, even when
users are restricted to simple seed geometries it is still possible to
specify flow-tangential curves that lead to degenerate stream sur-
faces.

We propose an interaction metaphor that is different to this clas-
sical approach: we give the user direct, interactive control over
complete flow-aligned surfaces. In this work the term flow-aligned
surfaces denotes both, flow-tangential and flow-orthogonal sur-
faces. Flow-orthogonal surfaces will be used to specify seed curves
that are near flow-orthogonal to define non-degenerate stream sur-
faces. Our approach is deformation-based. The basic idea is to start
from an initial surface M0, which is a procedurally generated planar
triangle mesh. The user positions this surface within the area of in-
terest of the flow domain. Then this surface is iteratively deformed
into intermediate surfaces Mk in such a way that the result con-
verges to a surface that is aligned with the flow. Figure 1 illustrates
the basic principle. At any time the user can interactively reposi-
tion the surface to more interesting locations, and simultaneously
the surface shape adapts according to the altered local flow. We
apply Poisson-based deformations and achieve interactivity by pre-
factorization of the involved linear operators. In contrast to other
Poisson-based deformations our approach is data-driven in that it is
steered by the local flow.

Orthogonal alignment. Surfaces that we align orthogonally
to the flow maximize total flux. Exactly flow-orthogonal surfaces
exist in conservative but do not exist in general vector fields. Be-
fore considering the entire surface mesh we start with the analysis
of aligning a single triangle orthogonally to the flow. The only ad-
missible class of deformations are (rigid) rotations, since we strive
to preserve the shape of the triangle and only align it locally to the
flow. Let R(a,γ) ∈ SO(3) be the transformation describing a ro-
tation around the axis a with angle γ and let γ(p,q) be the angle
between the vectors p and q. If we assume a linear vector field v(x)
on a triangle t j = (a,b,c) given by v j(x) = ∑i∈t j

φi
j(x)v(xi), then

the flux f j through t j can be expressed as

f j =
∫

t j

n j
Tv j(x)dx =

A j

3
n j

T (v(xa)+v(xb)+v(xc))

with triangle area A j and normal n j. Since 1
3 (v(xa) + v(xb) +

v(xc)) is the value of the linearized vector field at the center of the
triangle the nonlinear flux through the triangle can be approximated
by dropping the linearity property and evaluating the approximate
flux by a single point quadrature that evaluates the vector field at
the triangle center: f j ≈ A j n j

T v j with v j := v(1
3 (xa +xb +xc)).

To maximize the flux and to align the triangle orthogonally to the
flow a rotation that minimizes γ(n j,v j) has to be performed around
the axis a j = n j×v j . We can therefore rotate the triangle (around
its center) by the transformation R(a j,γ(n j,v j)) such that the ap-
proximated flux f j is maximized.

Using Poisson-based deformations this consideration for a single
triangle can directly be applied to align triangle meshes with the
flow. Instead of transforming the vertex coordinates directly the
basic idea is to transform the gradients of the coordinate function
of each triangle. This means that the local gradient transformations
of each triangle of the mesh are given by

T j = R(a j,γ(n j,v j))
(see Section 3). The deformed mesh that optimally approximates
these modified gradients (in least-squares sense) is then recon-
structed by solving (5). In Section 8 we show that our method for
computing orthogonal surfaces achieves higher flux rates compared
to APAP [32] surfaces.

Tangential alignment. Only a slight modification of the previ-
ous argument is required to directly obtain flow-tangential surfaces
in the same framework, as flow-tangential surfaces minimize the to-
tal flux. Therefore, using

T j = R(a j,γ(n j,v j)− π/2)

to minimize the deviation of γ(n j,v j) from π/2 as the local gradient
transformation for each triangle minimizes the flux through each
triangle, and approximately flow-tangential surfaces are obtained.

Interactive iterative deformation. Surfaces will in general not
directly be aligned with the flow when the mesh is reconstructed
using (5) together with the proposed local gradient transformations.
This is because the gradients of the reconstruction only comply with
the prescribed gradients in least-squares sense. Moreover, and more
importantly, the rotations are only flux-optimizing if triangles un-
dergo no translation (unless the vector field is constant). This is
because otherwise the local flow after reconstruction differs from
the one that was used to determine the rotations. In fact, the re-
construction inevitably has to introduce slight translations for the
mesh to be continuous. Therefore, one single reconstruction is,
in general, not sufficient to obtain a deformed and aligned mesh.
Yet, if only small deformations are performed, then the flux is it-
eratively optimized until the mesh converges to an aligned config-
uration. This is justified by a mild continuity assumption on the
vector field, i. e., a matrix norm of the Jacobian of the vector field is
bounded. The convergence in interactive sessions is further quan-
tified in Section 7. We perform small deformations by limiting the
maximal absolute value of the rotation angle by a constant small
value η . Hence, small deformations are performed iteratively and
we compute new local gradient transformations for each intermedi-
ate deformed configuration Mk. From the user’s perspective these
iterative deformations are continuous. Convergence is achieved if
the maximal rotation angle is smaller than a constant value ε . This
iterative deformation approach is, in essence, similar to other de-
formation [33] and parametrization methods [42, 24], which also
minimize nonlinear measures.

There are two cases that still need to be handled by corrections of
the local gradient transformations: First, triangle area may vary be-
tween iterations due to the least-squares reconstruction. We avoid
this artifact by performing an additional damped rescaling trans-
formation of the prescribed gradients by using T′j =

(
A0

j/Ak
j

)1/2 T j

as local gradient transformations, where Ak
j is the area of triangle

t j in the k-iteration. Second, for tangentially aligned surfaces it is
possible that two neighboring triangles converge to a flow-aligned,
but oppositely directed configuration, because both configurations
minimize the local flux. This is due to the fact that local gradi-
ent transformations are computed independently of each other. To
correct this artifact we prescribe a maximal dihedral angle θmax.
If for two neighboring triangles tp and tq with dihedral angle θpq
we detect that the angle defect δ = θpq−θmax > 0, i. e., the dihe-
dral angle is greater than the prescribed maximum angle, we mod-
ify the local gradient transformations as T′p = R(np×nq,δ/2)Tp,
and T′q = R(nq×np,δ/2)Tq. This way the dihedral angle is mini-
mized in consecutive iterations until the fold is resolved. The video
demonstrates the stability of this unfolding technique. In the un-
likely event of sampling a critical point, i. e., v j = 0, or if the trian-
gle is located outside of the flow domain we simply set T j = I. In
all experiments we use η = 0.1, ε = 10−6, and θmax = π/2. These
are all parameters of our approach.

Numerical solution. For the reconstruction of the deformed
mesh using (5) the coordinates of at least one vertex need to be
prescribed to account for the translation invariance of the Poisson-
based method. We found that fixing vertices of the triangle that is
closest to the barycenter of the mesh works well in practice. We
use “soft” constraints on these vertices such that the system in (5)
becomes positive-definite.

The global iterative deformation can be performed in real-time
as each single deformation is very cheap. This is because for each
iteration only the right-hand side of (5) varies. In particular the ma-
trices L and D are constant as we discretize these operators on the

Figure 2: Parametrization types. Iso-contours (•) of flow tangential
surfaces are used to integrate larger exact stream surfaces (•) (left).
Orthogonally aligned surfaces (•) can be parametrized using different
angular rotations (middle) or using circular geodesics-based distance
fields (right).

initial mesh M0. This approach has two benefits: First, since the
system matrix L (augmented with a soft constraints diagonal term
W) is symmetric positive definite, we are able to perform one single
sparse Cholesky factorization only once in a preprocessing step of
the interaction. This factorization RTR = L+W yields the sparse
triangular Cholesky factor R. Then only back substitutions have to
be performed in each iteration for updated right-hand sides to up-
date the mesh coordinates and guarantee interactive deformations:
X′k+1 = R−1R−T (DY′k +WXc

)
with the matrix Xc of constrained

mesh coordinates. Second, in each iteration M0 is deformed ac-
cording to the updated gradients, and we conceptually do not de-
form intermediate meshes. This way possible errors introduced in a
single deformation step cannot accumulate in the iteration and the
mesh discretization of the deformed surface is based on M0.

Interaction. During the iterative deformation the user can in-
teractively position and orient the current surface Mk inside the do-
main. In the next iteration the surface is deformed according to the
changed local flow. We provide rigid translation and rotation op-
erations and interleave user operations and deformation iteration.
Usually deformations converge after a few iterations (quantified
experimentally in Section 7). The surface can also be grown in a
user-defined direction. We use a growing strategy that is similar to
the one by Schulze et al. [32] by computing an offset curve at the
boundary that is tangential to the surface. The offset curve is then
tessellated to obtain the grown surface. Note that we perform this
update operation of mesh coordinates on both the current mesh Mk
and the base mesh M0 to be able to update the differential operators,
which are discretized on M0. However, since growing changes the
connectivity of the mesh, the discretized Laplace-Beltrami operator
has to be refactored in each growing step. This is a more expensive
operation, especially for large meshes. It turns out that growing a
tangentially aligned surface in a direction orthogonal to the flow
is advantageous for the seed curve extraction discussed in the next
section (see Figure 4). The accompanying video shows examples
of interactive sessions.

5 SURFACE PARAMETRIZATION FOR SEED EXTRACTION

The flow-aligned deformations presented in the previous section
are well-suited for interactive exploration of flow data sets. How-
ever, as we do not perform mesh adaption during deformation,
we cannot formally guarantee exact flow alignment. Nevertheless,
the converged surfaces are well-suited to provide orthogonal seed
curves for an additional front line-based stream surface integration
using either classical [16] or more advanced [31] surface integra-
tors. Stream surfaces seeded from curves in approximately flow-
tangential surfaces coincide locally, but they span a larger part of
the domain due to integration. Flow-orthogonal surfaces are even
more suited for stream surface seeding as any curve in such a sur-
face is also flow-orthogonal by construction. Seed curves on flow-
orthogonal surfaces can either be manually “drawn” by the user
(see Figure 4) or computed automatically. To automatically calcu-
late seed curves we first perform different kinds of parametrizations

Figure 3: Stream surface parametrizations. The exact unnormalized
time line/stream line parametrization obtained by front line-based
stream surface integrators (top) exhibits more distortion than our
least-squares tangential parametrization (bottom).

of flow-aligned surfaces. Flow-orthogonal seed curves are then ex-
tracted as iso-contours of these parametrizations.

Note that the following computations are based on the same com-
putational framework of Poisson-based scalar field optimization.
In fact, our approach to parametrization of flow-
aligned surfaces is similar to the surface quadran-
gulation approach by Bommes et al. [4]. This ap-
proach first computes a normalized orthogonal cross
field C j =

(
a j,b j

)
on each triangle t j. If these are

interpreted as the parametrization gradient and cogra-
dient, we can directly compute the corresponding parametrization
scalar fields. To do so a globally integrated parametrization energy

ep(r,s) = ||Gr−a||2A + ||Gs−b||2A (6)
similar to (3) is minimized for the parametrization scalar fields
r(x),s(x) with stacked coefficients vectors (r,s). This is equiva-
lent to solving

GTA G(r,s) = GTAC (7)

with the 3n×2 matrix CT =
(
CT

1 , · · · ,CT
n
)
. Once again scalar fields

need to be constrained at a single vertex vc. Unless otherwise spec-
ified by the user we constrain the vertex nearest to the barycenter
onto the parameter origin. In general only the gradients a j need to
be determined, and the second orthogonal cross direction follows
from b j = a j × n j. For quadrangulations the computation of the
guiding cross fields turns out to be the most complex part since
they need to be determined from the shape geometry only. In this
work, however, we make use of the flow-alignment property of the
considered surfaces from which guidance fields can directly be de-
termined. Figure 2 illustrates the different parametrization types we
propose: tangential, orthogonal, and circular parametrizations.

Tangential parametrization. For tangentially flow-aligned
surfaces a natural choice for the parametrization guidance field a j is
simply the vector field itself: a j = P j v j/||P j v j || with P j = I−n jnT

j .
The projection P j into the triangle plane is only required if the sur-
face is not yet aligned exactly with the flow. Normalization of the
gradient field guarantees that iso-contour lines are near-equidistant
on the surface. Iso-contours of r(x) are near-perpendicular to the
flow and can therefore be used as seed curves of stream surfaces,
whereas iso-contours of s(x) should not be used as seed curves as
they are near-tangential to the flow. Note that the extracted iso-
contours are general curves, which is a much greater set of possible
seed curves compared to the typically used straight line segments.
The number of possible selectable stream surfaces is therefore also
much higher. This natural Poisson-based parametrization technique
for flow-aligned surfaces is applicable to all other integral surfaces
as well and is useful in its own right: Figure 3 demonstrates that our
normalized parametrizations are less distorted compared to the un-
normalized time line/stream line parametrizations, which are gen-
erated by common stream surface integrators [16]. We use this type
of parametrization to compute LIC-like visualizations in Section 6.

Orthogonal parametrization. One application of orthogo-
nally aligned surfaces for flow analysis is their applicability as gen-
eral seed structures. Therefore, points on the interactively speci-
fied surfaces can also directly be used for seeding, e. g., illuminated
stream lines [25] (see Figure 5). To extract seed curves for surface
integration we again rely on a parametrization. By construction the
vector field does not directly provide directions that are tangential
to the surface and usable for parametrization. To obtain these di-
rections we perform a global surface-dependent rotation in the fol-
lowing way: for the normal nc at the constrained vertex vc as the
reference, we compute a global rotation axis rc by using one basis
vector of the null space of nc. The basis of the null space can, e. g.,
be obtained by using a QR-factorization nc = Qc Rc and taking the
second and third column of Qc. Then the unnormalized guidance
field is given by a j = P j (R(nc,α)rc)× v j. Here we have intro-
duced one additional degree of freedom for the user in that rc can
additionally be rotated in the null space by an angle α to align the
resulting linear iso-contours differently in the orthogonal surface.
The resulting iso-contours are general curves as they are embedded
in orthogonally aligned surfaces. However, they have the tendency
to span the surface in a straight way (see Figure 2).

Circular seeds. For certain flow phenomena straight seed
curves may not be the desired type of seed structures. For example,
recently circular seed curves were successfully used for illustrative
flow visualization by Hummel et al. [17]. This type of curves can
also be extracted in our computational framework. Note that cir-
cular curves can be regarded as iso-contours of a geodesic distance
field centered at vc. We use the recent method by Crane et al. [12],
who compute geodesics using a heat flow method, because it uses
the same gradient-based operators we use in our work. We only
sketch an outline of this method here. In essence, their method first
performs a heat flow integration from a point source to obtain a heat
distribution scalar field. Then a guidance vector field is obtained by
normalizing the negative gradient of the heat distribution. The heat
integration is performed by a single implicit backward Euler step
by solving (I− tL)h = h0 for the heat scalar field h. Here h0 is the
initial heat distribution that is one at vc and vanishes on all other
vertices. As proposed by the authors we use a scale-invariant time
step of t = 5AM/|T|, where AM is the total surface area. Then the
guidance vector field is obtained by normalizing the negative gradi-
ents a =−Gh on each triangle and a final Poisson system is solved
with these gradients for a distance field d(x). We use iso-contours
of d(x) to extract circular seeds on orthogonally aligned surfaces.

6 PARAMETRIZATION-BASED LIC-LIKE VISUALIZATION

The Poisson-based parametrization presented in the previous sec-
tion can directly be used to compute LIC-like texture-based flow
structure visualizations for stream and path surfaces [22]. For the
unnormalized tangential case (a j = v j) the key observation is that
the energy (6) approximates flow directions with gradients of r(x)
in least-squares sense. The scalar field r(x) can therefore be in-
terpreted as an approximation for the time coordinate of a global
space-time parametrization of stream as well as path surfaces. Such
space-time parametrizations are either hard to compute or are of
poor quality (see Figure 3). For this reason surface-based LIC tech-
niques rely on chart-packing or screen-space techniques to over-
come the absence of a high quality parametrization [21, 23, 15].

We use global tangential parametrizations to efficiently compute
LIC-like visualizations. These special parametrizations allow to
simply map precomputed seamless structured textures onto the in-
tegral surface to visualize the flow structure. One choice is a high
contrast texture of colored noise that is anisotropically low-pass fil-
tered in time direction and generates LIC-like flow structure pat-
terns. Alternatively, an illustrative visualization of flow directions is
obtained by using a texture of flow-aligned arrows. The textures are

(I)

(II)

(III)

(I)

(II)

Figure 4: Seeding at the TURBINE. Top: a tangential surface is
interactively placed into the inflow area of the flow (I). It is then
grown orthogonally to the flow (II) and an iso-contour of a tangen-
tial parametrization yields a non-straight seed curve (III) for the in-
tegration of the final stream surface (top right). Bottom: onto an in-
teractively placed orthogonal surface (I) a orthogonal seed curve is
manually “drawn” (II) and used for stream surface integration.

shown in Figure 8 (bottom right). As texture structures are approx-
imately aligned to flow directions due to the energy-minimizing
parametrizations the visualization have a LIC-like character.

Flow directions are only approximated in least-squares sense and
are not necessarily exactly interpolated everywhere by the minimiz-
ers of (6). However, in all our experiments we found that the gradi-
ents of r(x) are generally very well fitted to the flow and will only
diverge in small regions of the surface. The time component of
the energy ep therefore vanishes almost everywhere on the surface
and the LIC-like visualization is only incorrect in small localized
regions. To remedy this limitation we mask these regions by blend-
ing the texture with the average texture color at each pixel. The
blending function b(γ) depends on the local angle γ(v(x),∇r(x))
between the flow and the gradient of the time component of the
parametrization. A smooth cubic sigmoid-shaped blending poly-
nomial that interpolates b(0) = 0 and b(π/2) = 1 turns out to be
sufficient to hide the parts of the surface where ∇r(x) is not exactly
aligned with v(x). The remaining structures of the visualization are
aligned with the flow and are also distributed proportional to ||v||
since we use a j = v j to fit the parametrization.

This technique does not require any integration nor costly texture
advection and only amounts to optimizing one global parametriza-
tion energy. As we only have to sample the vector field once to
setup the resulting linear system (7) the visualization is very effi-
cient to compute. Additionally, the visualization is frame-coherent
and the texture map can also be used to animate the flow structures
in steady stream surfaces: an animation of flow structures is ob-
tained by simply offsetting the parametrization time-coordinate for
each frame, resulting in a movement of the flow structure along ap-
proximated stream lines. Note that animation is only meaningful
for stream and not for path surfaces.

7 RESULTS

Seed selection. Figure 5 shows integration results starting
from seed curves on orthogonal surfaces. The orthogonal surfaces
were all placed interactively with number of triangles (|T|) ranging
from 1.7× 103 (STALLING2D) to 3.5× 103 (CYLINDER). Note
that shapes of interactively deformed surfaces are rather insensitive
to tessellation quality as the energy (3) is an integrated quantity
and a discretization of a continuous energy. The STALLING2D
flow is a conservative two-dimensional benchmark data set pro-
posed by Stalling [34]. We show multiple uniformly distributed

Figure 5: Interactive seeding results. The surfaces orthogonal surfaces (•) are positioned interactively by the user. Then stream surfaces and
stream lines (•) are seeded from these orthogonal surfaces and integrated tangentially to the flow. Both orthogonal (STALLING2D, CYLINDER,
and STEP) as well as circular parametrizations (BUBBLECHAMBER, cutaway view) were used to extract flow orthogonal seed curves.

stream surfaces on a highly curved orthogonal surface. Our ap-
proach for orthogonal surfaces does not suffer from “spiky” arti-
facts at fixed vertices that may appear using the APAP approach
(see Figure 5 in [32]). A similar example is shown for the more
complex CYLINDER flow [9] (see, e. g., [8, 13, 31]) where an or-
thogonal surface was placed near the flow vortex. Iso-contour vari-
ation reveals the narrow outflow region of the vortex through the or-
thogonal surface. Different levels of the tumbling flow in the mea-
sured BUBBLECHAMBER data set of a bioreactor can be visualized
using circular seeding curves on an orthogonal surface located at
the turnover point of the flow. The simulated DELTAWING data set
of the flow at a triangularly-shaped airplane is known to contain
two dominant vortical structures [14, 5, 17, 31]. Flow-orthogonal
surfaces can be used to seed integrated quantities like stream lines
near the assumed locations of the vortices for their concrete visual-
ization. Stream surfaces of different complexity can be selected as
different iso-contours in an orthogonal surface in the STEP data set
of a flow behind a backward-facing step [18].

Figure 4 (top) illustrates an effective work flow to compute seed
curves in prescribed flow tangential surface patches at the example
of a hydroelectric TURBINE [31]: a tangentially aligned surface is
placed in the inflow region and subsequently grown orthogonally
to the flow. Then a seed curve can be extracted from the tangen-
tial parametrization defining a stream surface that covers a large
part of the domain and interpolates the initial patch. Note that ex-
tending a stream surface orthogonally to the flow is not possible
with classical stream surface integrators, but poses no problem for
our deformation-based approach. Figure 4 (bottom) shows another
stream surface integrated from an orthogonal seed curve “drawn”
by the user on an orthogonal surface, which was positioned interac-
tively. The video shows examples of interactive seeding.

LIC-like visualization. Figure 8 shows LIC-like and illustra-
tive visualizations based on tangential parametrizations for both
stream and path surfaces. The visualized structures capture flow
directions in all non-masked regions and bifurcations are correctly
represented by the parametrizations. We evaluate average an-
gles (in degree) and their standard deviation (γ̄,σγ) between v
and ∇r for the DELTAWING (1.0,0.9), STEP (2.2,2.4), and TUR-
BINE (2.7,5.7) data sets, which are close to the optimal solution.
The larger standard deviation is caused by outlier regions, which
are masked by blending. We note that for a few examples the
parametrization may not be onto, i. e., it may contain self intersec-
tions in the parameter domain. However, self intersections in the
parametrization pose no problem in this application as they only

1000500

0

1

0

Figure 6: Flux convergence in interactive session. The graph shows
the normalized flux fn of each deformation iteration in an interac-
tive session for tangentially (•) and orthogonally (•) aligned surfaces.
Translations, rotations as well as growing operations were performed
by the user, which result in quickly optimized “flux spikes”.

result in texels mapping to multiple parts of the surface. As the tex-
tures have no structure except flow alignment, which is maintained
even at self intersections, no visual artifacts or incorrect visualiza-
tions arise. See the accompanying video for examples of frame-
coherence / viewport-independence and steady flow animation.

Convergence. The interactive deformations presented in Sec-
tion 4 are designed to either maximize or minimize total flux iter-
atively. We quantify the convergence of the deformation iteration
within interactive user sessions, the results are visualized in Fig-
ure 6. As flux depends on the vector field norm (which can signif-
icantly vary in the flow domain), we measure the normalized flux
fn = A−1

Mk
∑t j∈T A j n j

Tv j/||v j || in each iteration k. Note that fn = 1
for exactly orthogonal surfaces, and fn vanishes for exactly tangen-
tial surfaces. We observe rapid decay for both surface types such
that convergence is achieved after few iterations. Moreover, tangen-
tial surfaces always converge to exactly aligned surfaces, whereas
orthogonal surfaces may not always reach an exact state. This is
not surprising, since perfect orthogonality is generally not possible
[26], except for, e. g., conservative flows.

Performance. We solve linear systems using the
CHOLMOD [11] library to perform sparse Cholesky factor-
ization with fill-in reducing reordering. Solving Poisson-type
problems has, in theory, sub-quadratic complexity but scales
even better in practice [6]. All our examples were computed
on an Intel Core i7-2600 3.4GHz Linux PC. In Table 1 we list
measured timings of our single-threaded deformation method.
Using a mesh resolution of |T| ≈ 5,000 turns out to be sufficient
for all tested data sets, but significantly larger meshes can still
be handled without problems. The timings indicate that inter-
active results can be guaranteed. A linear system factorization
(FACTOR) has to be computed only once and in each iteration

Preprocess Iteration
|T| FACTOR GTRANSF SOLVE IT/S NCONV

8×102 0.5 0.26 0.16 2,300 5
5×103 2.3 1.5 0.25 570 9
2×104 13.2 6.4 0.83 130 16
8×104 932 24.2 4.5 35 19
3.2×105 8,000 91.1 23.0 9 22

Table 1: Deformation timings. For differently sized meshes (|T|) we
list the required times to perform system factorization (FACTOR), gra-
dient transformation (GTRANSF), and system solving (SOLVE) in ms.
IT/S indicates performed number of iterations per second, NCONV
denotes the average number of iterations for convergence.

Figure 7: APAP comparison. Starting from a converged APAP [32,
Figure 10] surface (left) our deformation converges to an even better
aligned orthogonal surface (right). The color scale captures normal-
ized f j ∈ [0.75, 1]. The highlighted fixation artifact at the center vertex
is also removed by our deformation.

only efficient gradient transformations (GTRANSF) and system
solving (SOLVE) by back-substitution need to be performed. Note
that local gradient transformation computations require vector
field sampling (see Section 4), which turns out to be costly for
high mesh resolutions. However, since each transformation can
be computed independently, this operation is a natural candidate
for parallelization, e. g., by parallel vector field sampling on the
GPU. As almost identical systems are solved for Poisson-based
parametrization timings for tangential/orthogonal parametrization
as well as for the LIC-like visualizations are very similar to the
presented deformation timings.

8 DISCUSSION

Comparison to APAP. For flux optimization we search for the
same class of surfaces as the APAP approach: orthogonally aligned
surfaces. A key difference is that the vertices of our surfaces are not
constrained to only move along (scaled) flow directions, but they
move along general paths. This way we achieve higher flux rates
compared to the APAP approach. Moreover, our method does not
generate deformation artifacts at constrained vertices, whereas even
with careful regularization these artifacts cannot be completely sup-
pressed by the APAP approach. Figure 7 exemplifies both proper-
ties where we initialize our deformation method with a converged
APAP surface. Additionally, we only need to perform the expensive
linear system factorization once, whereas APAP requires to solve a
new linear system in every integration step.

Our method does, however, not strive to replace classical front
line-based stream surface integrators for tangential surfaces in
terms of approximation quality. Rather, our approach applies
Poisson-based methods to enhance the usability and effectiveness
of the concept of surface integrators, e. g., by approximate inter-
active deformation-based selection of interesting flow regions as a
“preview” and by parametrization-based nontrivial seed curve ex-
traction. Growing tangential surfaces orthogonally to the flow is
another technique that is not possible with classical methods.

Limitations. Our deformation method is based on local align-
ment of surface orientations to the flow. High curvature regions of
the flow require tangential surfaces to change their normal rapidly.

This is only possible for surfaces that are locally tessellated suffi-
ciently high enough. However, since we perform no adaptive mesh
refinement yet, the deformation iteration is unlikely to converge in
these areas. An adaptive subdivision scheme (with costly refactor-
ization) and criteria for its applications would therefore be required
to also handle these regions. Note that this lack of refinement is
not a severe problem for the current approach as meshes do not
degenerate in these areas; the mesh is rather “pushed out” of high
curvature areas due to folding penalization (see video).

The quality of LIC-like visualizations depends to a great ex-
tent on the quality of the underlying parametrization. Although
exact flow alignment cannot be guaranteed by the least-squares
parametrization energy, the presented results indicate that the
parametrizations are flow-aligned almost everywhere in data sets of
practical relevance. Still, there exist regions where flow alignment
may not exactly be met and which we mask in the visualization.
Our parametrization trades exact flow alignment, which is hard to
compute, for more efficient computation, which may not be exact
everywhere. In contrast, screen-space methods become unstable at
silhouettes, and chart-packing approaches suffer from texture reso-
lution and discontinuity artifacts. The explicit hierarchical handling
of critical or hard-to-parameterize regions [23] and the analysis of
better suited parametrization energies is, therefore, an interesting
direction for further research.

9 CONCLUSIONS

In this work we showed that Poisson-based interactive deformations
and parametrizations are well-suited to support explorative analysis
and seed specification to study flow phenomena. Additionally, we
introduce a LIC-like rendering technique for surface-based flow vi-
sualization. Since these methods are all based on a small set of
well-established differential operators, it is easy to integrate our ap-
proach into existent visualization packages.

A possible direction for further research is the application of
the deformation method to time-dependent vector fields. Another
promising direction is the incorporation of additional application-
dependent surface quality measures into the optimization. We be-
lieve that the proposed parametrizations are also beneficial for, e. g.,
applications like remeshing characteristic surfaces.

ACKNOWLEDGEMENTS

We thank Tino Weinkauf for resampling the CYLINDER data set.
The DELTAWING data set is courtesy of Markus Rütten, DLR.
We thank Axel Seeger and Klaus Affold for providing the BUB-
BLECHAMBER data set. The TURBINE flow is part of the visualiza-
tion system AMIRA. The primary author has been partially funded
by the Studienstiftung des deutschen Volkes.

REFERENCES

[1] R. Abraham, J. Marsden, and T. Ratiu. Manifolds, Tensor Analysis,
and Applications. Applied Mathematical Sciences. Springer, 1988.

[2] ANSYS Inc. CFD-Post, Sep. 2012. URL: www.ansys.com.
[3] S. Bachthaler and D. Weiskopf. Animation of orthogonal texture pat-

terns for vector field visualization. TVCG, 14(4):741–755, 2008.
[4] D. Bommes, H. Zimmer, and L. Kobbelt. Mixed-integer quadrangula-

tion. TOG (Proc. SIGGRAPH), 28(3):78–87, 2009.
[5] S. Born, A. Wiebel, J. Friedrich, G. Scheuermann, and D. Bartz. Il-

lustrative stream surfaces. TVCG (Proc. Vis), 16(6):1329–1338, 2010.
[6] M. Botsch, D. Bommes, and L. Kobbelt. Efficient linear system

solvers for mesh processing. In Proc. MS, pages 62–83, 2005.
[7] M. Botsch and O. Sorkine. On linear variational surface deformation

methods. TVCG, 14(1):213–230, 2008.
[8] K. Bürger, F. Ferstl, H. Theisel, and R. Westermann. Interactive streak

surface visualization on the gpu. TVCG (Proc. Vis), 15(6):1259–1266,
2009.

Figure 8: LIC-like visualization results. Precomputed textures of anisotropic noise and flow-aligned arrows (bottom right) are mapped to the
tangentially parametrized stream surfaces (STEP, TURBINE, DELTAWING) and two path surfaces (UNSTEADYCYLINDER). Resulting LIC-like and
illustrative structures are flow-aligned everywhere except at locally masked regions (e. g., at the vortex of the DELTAWING).

[9] S. Camarri, M.-V. Salvetti, M. Buffoni, and A. Iollo. Simulation of
the three-dimensional flow around a square cylinder between parallel
walls at moderate Reynolds numbers. In AIMETA XVII, 2005.

[10] J. Y. Chang, K. M. Lee, and S. U. Lee. Multiview normal field inte-
gration using level set methods. In Proc. CVPR, pages 1–8, 2007.

[11] Y. Chen, T. A. Davis, W. W. Hager, and S. Rajamanickam. Algo-
rithm 887: Cholmod, supernodal sparse cholesky factorization and
update/downdate. TOMS, 35(3):1–14, 2008.

[12] K. Crane, C. Weischedel, and M. Wardetzky. Geodesics in heat.
CoRR, 2012.

[13] M. Edmunds, R. S. Laramee, R. Malki, I. Masters, T. N. Croft,
G. Chen, and E. Zhang. Automatic stream surface seeding: A feature-
centered approach. CGF (Proc. EuroVis), 31(3):1095–1104, 2012.

[14] C. Garth, H. Krishnan, X. Tricoche, T. Bobach, and K. Joy. Generation
of accurate integral surfaces in time-dependent vector fields. TVCG,
14(6):1404–1411, 2008.

[15] J. Huang, W. Pei, C. Wen, G. Chen, W. Chen, and H. Bao. Output-
coherent image-space lic for surface flow visualization. In Proc. Paci-
ficVis, pages 137–144, 2012.

[16] J. P. M. Hultquist. Constructing stream surfaces in steady 3d vector
fields. In Proc. VIS, pages 171–178, 1992.

[17] M. Hummel, C. Garth, B. Hamann, H. Hagen, and K. Joy. Iris: Illus-
trative rendering for integral surfaces. TVCG (Proc. Vis), 16(6):1319–
1328, 2010.

[18] H.-J. Kaltenbach and G. Janke. Direct numerical simulation of flow
separation behind a swept, rearward-facing step at ReH = 3000. POF,
12(9):2320–2337, 2000.

[19] H. Krishnan, C. Garth, and K. Joy. Time and streak surfaces for
flow visualization in large time-varying data sets. TVCG (Proc. Vis),
15(6):1267–1274, 2009.

[20] J. Krüger, P. Kipfer, P. Kondratieva, and R. Westermann. A particle
system for interactive visualization of 3D flows. TVCG, 11(6):744–
756, 2005.

[21] R. S. Laramee, C. Garth, J. Schneider, and H. Hauser. Texture advec-
tion on stream surfaces: A novel hybrid visualization applied to cfd
simulation results. In Proc. EuroVis, pages 155–162, 2006.

[22] R. S. Laramee, H. Hauser, H. Doleisch, B. Vrolijk, F. H. Post, and
D. Weiskopf. The state of the art in flow visualization: Dense and
texture-based techniques. CGF, 23(2):203–221, 2004.

[23] G.-S. Li, X. Tricoche, D. Weiskopf, and C. Hansen. Flow charts: Vi-
sualization of vector fields on arbitrary surfaces. TVCG, 14(5):1067–
1080, 2008.

[24] L. Liu, L. Zhang, Y. Xu, C. Gotsman, and S. J. Gortler. A local/global
approach to mesh parameterization. CGF (Proc. SGP), 27(5):1495–
1504, 2008.

[25] T. McLoughlin, R. S. Laramee, R. Peikert, F. H. Post, and M. Chen.
Over two decades of integration-based, geometric flow visualization.
CGF, 29(6):1807–1829, 2010.

[26] K. L. Palmerius, M. Cooper, and A. Ynnerman. Flow field visualiza-
tion using vector field perpendicular surfaces. In Proc. SCCG, pages
27–34, 2009.

[27] P. Pérez, M. Gangnet, and A. Blake. Poisson image editing. TOG
(Proc. SIGGRAPH), 22(3):313–318, 2003.

[28] F. Post, B. Vrolijk, H. Hauser, R. Laramee, and H. Doleisch. The state
of the art in flow visualization: Feature extraction and tracking. CGF,
22(4):775–792, 2003.

[29] O. Rosanwo, C. Petz, S. Prohaska, I. Hotz, and H.-C. Hege. Dual
streamline seeding. In Proc. PacificVis, pages 9–16, 2009.

[30] T. Schafhitzel, E. Tejada, D. Weiskopf, and T. Ertl. Point-based stream
surfaces and path surfaces. In Proc. GI, pages 289–296, 2007.

[31] M. Schulze, T. Germer, C. Rössl, and H. Theisel. Stream surface
parametrization by flow-orthogonal front lines. CGF (Proc. SGP),
31(5):1725–1734, 2012.

[32] M. Schulze, C. Rössl, T. Germer, and H. Theisel. As-perpendicular-
as-possible surfaces for flow visualization. In Proc. PacificVis, pages
153–160, 2012.

[33] O. Sorkine and M. Alexa. As-rigid-as-possible surface modeling. In
Proc. SGP, pages 109–116, 2007.

[34] D. Stalling. Fast Texture-Based Algorithms for Vector Field Visualiza-
tion. PhD thesis, ZIB, 1998.

[35] R. W. Sumner and J. Popović. Deformation transfer for triangle
meshes. TOG (Proc. SIGGRAPH), 23(3):399–405, 2004.

[36] W. von Funck, T. Weinkauf, H. Theisel, and H.-P. Seidel. Smoke
surfaces: An interactive flow visualization technique inspired by real-
world flow experiments. TVCG (Proc. Vis), 14(6):1396–1403, 2008.

[37] T. Weinkauf, H.-C. Hege, and H. Theisel. Advected tangent curves:
A general scheme for characteristic curves of flow fields. CGF (Proc.
EG), 31(2):825–834, 2012.

[38] T. Weinkauf and H. Theisel. Streak lines as tangent curves of a derived
vector field. TVCG (Proc. Vis), 16(6):1225–1234, 2010.

[39] D. Xu, H. Zhang, Q. Wang, and H. Bao. Poisson shape interpolation.
GM, 68(3):268–281, 2006.

[40] Y. Yu, K. Zhou, D. Xu, X. Shi, H. Bao, B. Guo, and H.-Y. Shum.
Mesh editing with poisson-based gradient field manipulation. TOG
(Proc. SIGGRAPH), 23(3):644–651, 2004.

[41] R. Zayer, C. Rössl, Z. Karni, and H.-P. Seidel. Harmonic guidance for
surface deformation. CGF (Proc. EG), 24(3):601–609, 2005.

[42] R. Zayer, C. Rössl, and H.-P. Seidel. Discrete tensorial quasi-harmonic
maps. In Proc. SMA, pages 278–287, 2005.

