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In this paper, we study the regularization of quadratic energies that are inte-
grated over discrete domains. This is a fairly general setting, which is often
found in but not limited to geometry processing. The standard Tikhonov regu-
larization is widely used such that, e.g., a low-pass filter enforces smoothness
of the solution. This approach, however, is independent of the energy and the
concrete problem, which leads to artifacts in various applications. Instead,
we propose a regularization that enforces a low variation of the energy and
is problem-specific by construction. Essentially, this approach corresponds
to minimization w.r.t. a different norm. Our construction is generic and can
be plugged into any quadratic energy minimization, is simple to implement,
and has no significant runtime overhead. We demonstrate this for a number
of typical problems and discuss the expected benefits.
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1. INTRODUCTION

Solutions of a major class of problems in computer graphics are mod-
eled by an energy minimization. Of particular interest are quadratic
energies as their minimization leads to solving a linear system of
equations — a task that is well-understood and relatively inexpen-
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sive. For this reason, other types of energies that model more ex-
pensive nonlinear problems are often minimized iteratively such
that every step is a minimization of a quadratic energy, e.g., in
Quasi-Newton methods. Energy is a scalar quantity that is typically
integrated over a domain. In discrete settings the domain is com-
monly partitioned into elements: energy density is defined locally
on each element such that the global energy value consists of the
sum of integrals over all elements. The simplest and most wide-
spread partitions in computer graphics employ triangular elements
for planar or two-manifold domains and tetrahedral elements for
volumetric domains. In computer graphics, this setting is probably
known best for geometry processing applications.

A lot of research has been devoted to the definition of energies
and to their discretization (see, e.g., [Botsch et al. 2010]). In particu-
lar, this includes the well-known harmonic and conformal energies
and discrete versions of gradient, divergence, and Laplace operators
(or their counterparts in discrete exterior calculus). In this paper, we
study the construction of associated regularization terms — a topic
that has received considerably less attention in many applications.
Regularization terms are generally used to enable the solution of ill-
posed problems. An additional goal is to “pull” the solution towards
a certain class of feasible solutions by penalizing “undesired” behav-
ior, e.g., to prevent overfitting. A well-known and generic approach
is Tikhonov regularization (see, e.g., [Hansen 2010]), which gives
preference, for instance, to smoother solutions. De facto, this is the
standard approach for regularizing the minimization of quadratic
energies, especially for sparse operators.

In this paper, we propose a novel view on regularization that leads
to a simple and generic construction of problem-specific regularized
quadratic energies on triangular or tetrahedral partitions: instead of
demanding smoothness of the solution, the key idea is to give pref-
erence to solutions with low spatial variation in the energy over the
domain. This leads to the design of a regularization that is tailored
to the particular energy and is problem-specific by construction.
In other words, our proposed regularization refers to minimizing
smoothed quadratic energies. This is in contrast to generic Tikhonov
regularization methods, which are independent of the particular
energy and hence “problem-independent”. We show that there is
a generic construction for our regularization that is formally ex-
pressed as a generalized norm. Our approach features a simple and
generic implementation and has no significant runtime overhead.
We illustrate the recipe for the construction by applying our method
to a number of typical problems in geometry processing (although it
is not limited to problems of this field). The effect is demonstrated
by experimental results that reveal the practical benefits in various
applications, e.g., the avoidance of artifacts or in some instances the
convergence to solutions that so far were only achieved by expensive
nonlinear optimization.
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2. BACKGROUND

Regularization is an established and important tool for solving nu-
merical problems. Typical classes of application are the solution
of rank-deficient problems or discrete ill-posed problems that fre-
quently arise for inverse problems. We refer the reader to, e.g.,
[Hansen 2010] for an introduction and overview on regularization
for this kind of problems. In general, the singular value decompo-
sition reveals characteristics of linear operators, and regularization
can be expressed as filtering of singular values, e.g., truncation in
the simplest case. Classic Tikhonov regularization can be easily ex-
pressed as an explicit “filter” for singular values. In practice, this is
often not an option as the dimension of linear operators may become
too large. In particular, geometry processing problems involve too
many degrees of freedom. Still, they typically employ sparse linear
operators that define an integration of a quadratic energy in a domain.
Therefore, an alternative Tikhonov regularization formulation is pre-
ferred in practice: adding a quadratic regularization energy term for
implicitly filtering singular values. This way the numerical solution
is typically obtained more efficiently from the normal equations or
a QR-factorization.

There is a huge body of research on the appropriate discretization
of linear operators. This becomes evident especially in the geom-
etry processing context, where the domain is often a 2-manifold
embedded in 3D space: the discretization of the Laplace-Beltrami
operator by the well-known cotangent-weights [Pinkall and Polthier
1993] was only recently complemented by a formulation for general
polygonal meshes [Alexa and Wardetzky 2011], and there are a
number of variants (see, e.g., [Wardetzky et al. 2007]).

Interestingly, regularization operators received less attention. In
fact, often regularization is not considered at all. Mostly there is
a good reason for this: many problems are not ill-posed and don’t
require regularization in order to be solvable. Moreover, energies are
carefully designed with particular interpretations in mind, so from
a puristic point of view regularization or additional penalty terms
may spoil solutions. Probably, the most widely used “regularization”
is the preference of “soft constraints” in the least-squares sense,
i.e., introduction of a penalty term instead of elimination (see, e.g.,
[Botsch and Sorkine 2008]). If regularization takes place, then this is
typically done by preferring either a low norm solution or a smooth
solution. Both choices refer to standard Tikhonov regularization and
do not take the particular choice of energy into consideration. A
typical example is the reconstruction of curves and surfaces, where
a smooth solution is preferred. Here, the additional smoothness
term accounts for missing or inappropriately distributed data, that
may render the problem ill-posed. For instance, this is the case
in parametric spline fitting (see, e.g., [Hoschek and Lasser 1993])
or in more complex discrete settings (e.g., [Alliez et al. 2007]).
Problem-specific energy regularization is only rarely applied in
geometry processing: Eckstein et al. [2007] use regularization for the
specific problem of curvature flow design. They construct specific
regularizers or priors and show that this corresponds to defining
new inner products or norm alteration. We will get to a similar
interpretation for our generic approach without the restriction to
geometric flow design.

Examples for ill-posed problems include the reconstruction of
(geometric) data by Bayesian statistics, where the so-called prior
distribution provides a suitable model of the data. The surface re-
construction in [Huang et al. 2007], for instance, uses the prior to
constrain a “prototype surface”. Generally, the prior restricts the
solution space and enables a meaningful solution; this can be seen as
a regularization as well. Another notable example of a problem that
is likely to be ill-posed is the estimation of a linear operator for the

refinement of animations: Kavan et al. [2011] transform a quadratic
energy into a spectral space where the regularization operator, a
spatial low-pass filter, becomes diagonal.

The applications shown in this paper focus on typical geometry
processing tasks. In contrast to the examples listed above, regular-
ization is usually an optional part in this domain as problems are
generally well-posed (subject to boundary constraints). We show
that using regularization is worthwhile, if it is done carefully in a
problem-specific way. Although our approach is general and not
restricted to the geometry processing domain, we mostly stick to
this perspective in the following. We selected a number of standard
problems and representative state-of-the-art solutions as examples
for employing our approach. Credits to these original works as well
as brief summaries are given in the respective parts of Section 5.

3. SMOOTHED ENERGIES

For our generic regularization we start with the study of a general
class of optimization problems. We provide concrete examples for
such problems later in Section 5. For a compact spatial domain
D, a general optimization problem P consists of finding the d-
dimensional function u ∈ F , u : D → Rd from the function space
F of feasible solutions1 that minimizes a problem-specific global
quadratic energy EP . These global energies (or energy functionals)
have the general form2

EP(u) =

∫
D
||eu(x)||2 dx . (1)

Here, x ∈ D are points in the domain where local energies (or, more
precisely, energy densities) ||eu||2 : D → R of the global energies
are measured. Local energies are defined by vector-valued differen-
tiable and square-integrable local energy components eu : D → Rn.
Local energy components evaluate the problem-specific quality of a
feasible solution u of P at each point of the domain. Their dimen-
sion n depends on the concrete problem P , and eu is linear in u,
i.e., EP is quadratic in u. The spatial domains may be manifolds,
e.g., 2-manifolds embedded in 3D. An optimal solution

u† = argminu∈F EP(u) (2)

is a minimizer of EP , which is obtained as the solution of a linear
system. This optimization generally has to be performed subject to
suitable boundary constraints on u†. Boundary constraints may be
required to guarantee unique solutions, and/or they are imposed by
the user to modify the solution.

Many geometry processing problems P are in this class because
they require minimization of quadratic energies. For example, D
could represent an initial surface, and u would be the coordinate
function of a deformed version ofD. In this case, eu measures some
form of distortion induced by the deformation u relative to the initial
shape given by x. Usually, eu only depends on the value and the
gradient of u. We will show several examples in Section 5.

Often energies of the form (1) alone are not sufficient to define de-
sirable solutions, as the local energy components eu do not measure
smoothness of the solution. This leads to undesirable artifacts in
u†, which are often most noticeable near user-imposed constraints.
To alleviate undesired behavior, a common approach is to add an

1We assume that all derivatives of u required for P exist and are bounded
by the selection of F , e.g., F ≡ H1

(
D,Rd

)
.

2We denote a domain-wide integration of scalar densities s(x) along the
volume elements dx by

∫
D s(x) dx (see, e.g., [Eckstein et al. 2007]).
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additional quadratic regularization energy ER(u) that penalizes
non-smooth or in other respects undesirable behavior of u†:

E(u) = (1− β)EP(u) + β ER(u) (3)
u? = argminu∈F E(u) . (4)

Here, u? denotes the optimal regularized solution of P that min-
imizes the regularized energy E. The amount of regularization is
steered by the factor β ∈ [0, 1). These energies often use forms of
generic Tikhonov regularizers ETR for ER that have the general form
(see, e.g., [Hansen 2010] and the references therein):

ETR(u) =

∫
D
||Γu(x)||2F dx . (5)

Here, ||·||F denotes the Frobenius norm, and a prominent choice for
the linear regularization operator Γu is given by the componentwise
spatial gradient operator Γu ≡ ∇u on D to penalize first-order
variation of the solution and to enforce global smoothness of u.
Other common examples include Γu ≡ I u or Γu ≡ ∇2u that
penalize solution magnitude or second-order variation, respectively.
Similar types of generic regularizations are also well-known in other
application domains, e.g., in image processing [Strong and Chan
2000], where they are called total variation regularization.

We identify two major drawbacks of using these standard regu-
larizations: first, generic regularizers like those based on a low-pass
filter on u are independent of the concrete problem that is defined by
the energy EP . We call this property problem-independence. They
often perform poorly or too aggressively in correcting artifacts in u†

(see Section 7). In fact, standard first-order Tikhonov regularization
modifies solutions even if EP already vanishes. Second, the design
of effective regularizations is a delicate problem, and it is often
non-obvious as the original properties of EP should not be affected
too much.

Energy Smoothness. To overcome these drawbacks, we pro-
pose a new regularization that is tightly coupled to the minimized
energy and is based on energy smoothness. We define energy smooth-
ness regularization as

ER(u) =

∫
D
||∇eu(x)||2F dx, (6)

i.e., as the total squared spatial variation of the local energy compo-
nents. In contrast to functionals like (5) we do not directly measure
variation of the solution u, but variation of the induced local energy
components eu. This way the regularization is tightly coupled and
tailored to the original energy (1) and is problem-specific. With re-
spect to this property ER and the common Tikhonov regularizers
ETR are generally not identical, which will be discussed in Section 7.

Our regularization is motivated by the observation that artifacts
usually result in strong local energy variations. These variations
are effectively penalized by our approach. This results in solutions
for which energy is distributed more evenly in the whole domain,
which indirectly prevents artifacts: we demonstrate in Section 6 that
for a wide range of problems attractive results are obtained by this
conceptually simple but effective regularization strategy. Due to the
linearity of the gradient operator, the tensor field ∇eu is also linear
in u. Hence, the regularized optimization (4) stays quadratic in u
and is efficient to compute. Moreover, once a discretization of the
original problem (2) is set up, the regularization using (6) is very
simple to obtain. We show this in the next section.

4. DISCRETIZATION

In the following we consider only two-dimensional domains as
the construction is essentially the same for three dimensions.
We discretize planar or two-manifold domains D by triangular
meshes M = (V, E , T ), i.e., as sets of vertices i ∈ V , ori-
ented edges E ⊂ V2, and triangles T ⊂ V3. The edges E can
be partitioned into two disjoint sets: interior edges Ei and exte-
rior edges E \ Ei, the latter positioned at the boundary of M.

u0

u1

u2

u3
e

l(e) r(e)

We write l(e) and r(e) to denote the left and
right triangle at an oriented internal edge e, re-
spectively. We consider discrete functions onM
that are piecewise linear and represented by co-
efficients at the vertices, e.g., the vertex coor-
dinate function xi ∈ R2/3, or problem solu-
tions ui ∈ Rd. All coefficients of a function are “stacked” into
a single vector without subscript, e.g., u ∈ Rd|V|, or stacked
componentwise into a single matrix U ∈ R|V|×d. For a triangle
t = (i, j, k) ∈ T we denote the stacked coefficients at all vertices
of t by ut =

(
ui

T,uj
T,uk

T
)T ∈ R3d, and the component-wise

stacked coefficient matrix by Ut = (ui,uj ,uk)
T ∈ R3×d. For

convenience, we define the single-entry r × s matrix Λi,j
r,s that is 1

at (i, j) and zero elsewhere. Finally, we use the notation

||y||2N = yTN y and ||Y||2N = Tr
(
YTN Y

)
(7)

for (squared) vector and matrix norms that are induced by symmetric
and positive definite matrices N. (Tr() denotes the trace of a matrix.)
For instance, using the identity matrix I the well-known Frobenius
norm ||·||F is equivalent to ||·||I in this notation.

4.1 Piecewise Constant Energies

The majority of geometry processing approaches discretize contin-
uous energies on a per triangle basis, e.g., Poisson-based methods
(see, e.g., [Botsch et al. 2010]). In these discretizations, the local
energy components eu of EP are constant on each triangle, and
domain integration is performed by area weighting. Most discretiza-
tions of global, purely quadratic piecewise constant energies can be
expressed in the form

EP(u) = ||E u− c||2An . (8)

Here, E(x) is a global energy matrix of dimension n |T | × d |V|,
and c(x) ∈ Rn|T | is triangle-constant. E maps feasible solutions u
to |T | consecutive n-dimensional local energy vectors eu,t, which
are constant per triangle t. In most cases, E is a sparse matrix. In the
remainder of this work, we assume that all eu,t are defined in a com-
mon coordinate system, e.g., the canonical world coordinates in R3.
This can always be ensured by construction. Then ||eu,t − ct||2 is
also constant per triangle. Its integration over the mesh is performed
by the n |T |-dimensional square diagonal matrix An(x) given by
An = A ⊗ In. Here, we denote the Kronecker product by ⊗, In
is the n × n identity matrix, and A(x) is the |T | × |T | diagonal
matrix of triangle areas.

For applications where the coordinate functions of the solu-
tions are decoupled, E can be expressed as a matrix of dimension
n |T | × |V|, and the vectors u and c become matrices U and C
whose d columns correspond to coordinate functions. The general
formulation (8) remains the same with the difference that it expresses
a matrix norm (see (7)).

Energy Smoothness. Given a discretized energy in the form
(8), the derivation of a discretization of our energy smoothness
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regularization ER of (6) turns out to be straightforward. This is
because the gradient field∇eu vanishes almost everywhere onM as
eu is constant on each triangle: eu varies only across internal edges.
Therefore, the tensor ∇eu has a directional derivative component
only orthogonal to each internal edge at each point of the edge.
We estimate these directional derivatives by finite differences. A
discretization of the energy smoothness regularization ER that is
directly based on the discrete energy EP is then given by

ER(u) = ||Dn (E u− c)||2Bn .

Here, Dn is a sparse n |Ei| × n |T | discrete differential operator
on the local energy components. It is given by Dn = D ⊗ In,
where the |Ei| × |T | differential matrix D is nonzero only at

Det =

{
1 if l(e) = t
−1 if r(e) = t

, for all internal edges e ∈ Ei and tri-

angles t ∈ T . As eu is constant along each side of an edge, the
integration of (6) simplifies to a weighted sum of quadratic direc-
tional differences of the local energy along each internal edge. This
integration is performed by the n |Ei| square diagonal matrix Bn(x)
given by Bn = B ⊗ In, where B(x) is the diagonal matrix of
edge lengths of all internal edges. Ultimately, this discretization
of (6) can be interpreted as measuring the squared differences of
constant local energy components along each internal edge, which
are integrated by weighting with the respective edge lengths. Due
to this tessellation-dependent discretization, the regularization is in-
sensitive to the particular tessellation of the domain (see Section 6).
The edge length weights can further be modulated to obtain spatially
varying regularizations.

A discretization of the regularized energy (3) is then given by

E(u) = (1− β) ||E u− c||2An + β ||Dn (E u− c)||2Bn .

The formulation of this energy allows for a transformation (see
Appendix) into an equivalent expression

E(u) = ||E u− c||2Wn
(9)

with Wn = (1− β)An + βDn
TBn Dn .

Our regularization has the following properties:

β-weighted Norm. The total regularized energy in (9) has the
remarkable property that it measures a different norm of the same
energy residual E u − c as (8). In fact, the domain integration
represented by An simply has to be replaced by the β-weighted
generalized norm induced by Wn(x, β). We show in the Appendix
that the norm induced by Wn is well-defined.

For β = 0, the original energy is recovered, and Wn only per-
forms energy integration. For β > 0, Wn also measures first-order
energy variation. Instead of energy residuals any other triangle-
constant function may be integrated using Wn. Generally, Wn

induces a norm on the function space of triangle-constant functions.
Minimization in this space yields functions of low norms, which
incorporates low energy variation as steered by β. As the minimiza-
tion problem is defined by the energy, penalizing energy variation
results in a problem-specific regularization. In Section 6, we show
for a number of typical applications that solutions u? of smoothed
energies E defined by (E, c) are preferable to solutions without
regularization or to those from using Tikhonov regularization.

The norm induced by Wn can be interpreted as a weighted
Sobolev H1 norm, i.e., as a norm in the function value and its
first-order variation. Sundaramoorthi et al. [2007] and Eckstein et
al. [2007] use such a norm for the specific problem of computing
smoothed gradient flows. In contrast, we provide a general con-

struction for smooth energy minimization that is not restricted to
gradient flows, but supports any type of energies on meshes, e.g.,
parametrization energies. This is a key difference that enables the
general application of our method to a variety of geometry process-
ing problems.

Generic Implementation. The generalization of ||·||An to
||·||Wn

is also very beneficial from an implementation point of
view: many problems that employ quadratic energies on meshes
are already represented in the discretized form (8). Given a model
of the problem as (E, c), adding a problem-specific regularization
is nothing more than replacing the integration An by Wn, i.e., to
minimize (9). The setup of the matrix Wn is simple, it depends
only on the connectivity and coordinates of the domain meshM.
In particular, the setup of Wn is independent of a concrete energy
or concrete problem, and can be reused. This makes our energy
smoothness regularization by Wn a generic function that takes as
input β together with a meshM and can be applied to any problem
(E, c).

Optimization. The minimizer u? of the discretization of (4)
given by (9) can be computed by solving for the critical point of
∇E(u). Using normal equations, this is equivalent to solving the
linear system

ETWn E u? = ETWn c . (10)

After a potential elimination of boundary constraints, which might
be required due to rank deficiencies of E, the system becomes
symmetric positive definite and can be solved with the Cholesky
factorization L LT = ETWn E (see, e.g., [Botsch and Sorkine
2008]). Depending on the application, the factor can be reused for
different right-hand sides c. This factorization is efficient also for
sparse matrices if an additional fill-in reducing reordering is applied.
Obviously, if E is sparse then the system matrix remains sparse.
However, for β > 0 the number of nonzero entries increases as
Wn is only “quasi-banded” but not diagonal anymore, whereas An

is. Our experiments indicate that this lower sparseness results in
almost no loss in performance (see Section 6). This is because the
dimension of the systems, which dominates the asymptotic runtime
of linear solvers, is unchanged.

Volumetric Domains. The discretization is not restricted to
triangulations of 2D domains. The setting is very similar for 3D
domains. There, a tetrahedral partition of the domain is considered,
and the local energies are constant functions defined per tetrahedron.
Then the diagonal matrix An of tetrahedra volumes performs the
integration, and the differential operator Dn is defined for inner
triangles, each shared by its left and right tetrahedron. Consequently,
the integration of squared energy variation by Bn is then based on
triangle areas instead of edge lengths.

4.2 Piecewise Linear Energies

Until now, we consider only local energies that are constant on each
triangle. A similar approach is possible for piecewise linear local
energies that are defined as nodal values at vertices. Note that it is
generally easier and more natural to define energies or errors on a
per-triangle basis. For example, all of our applications in Section
5 will only require piecewise constant energies. Still, for instance
energies used in piecewise linear finite element methods (FEM) are
often discretized on a per-vertex basis. Therefore, we give a short
outline for the piecewise linear energy setting, for which our concept
is applicable as well.

ACM Transactions on Graphics, Vol. XX, No. XX, Article XX, Publication date: XX XX.



Smoothed Quadratic Energies on Meshes • 5

Quadratic piecewise linear energies on triangle meshes can again
be written in the general form

EP(u) = ||E u− c||2Mn
.

Here, E(x) is the energy matrix of dimension n |V| × d |V|, and
c(x) ∈ Rn|V| is constant per vertex. In contrast to (8), energies are
piecewise linear and we perform domain-wide energy integration
by the n |V| × n |V| FEM mass matrix Mn(x) that integrates each
of the n energy components separately (see, e.g., [Braess 2007]).
For regularization, we measure the first-order energy variation by
integrated energy gradients that are triangle-constant:

ER(u) = ||Gn (E u− c)||2Amn .

Here, Gn is the mn |T | × n |V| gradient operator that assigns each
triangle the constant gradient vector of each of the n energy compo-
nents in a canonical m-dimensional basis, e.g., m = 2 for triangle
meshes and m = 3 for tetrahedral meshes. Gn can be constructed
in a component-wise way by replicating the plain two-variate gradi-
ent operator G onM (Equation (16) in the next section provides
an example). Integration of the constant squared gradient norms is
then again performed by area-based weighting using the mn |T |
diagonal triangle area matrix Amn.

The regularization of piecewise linear energies can again be ex-
pressed compactly as

E(u) = ||E u− c||2Wn

with Wn = (1− β)Mn + βGn
T Amn Gn .

Hence, similar to piecewise constant energies, we obtain regularized
solutions by optimization in a space of smoother solutions expressed
by the modified norm Wn.

Note that different integration operators are commonly used in
the literature, e.g., diagonal lumped barycentric mass matrices [Eck-
stein et al. 2007; Botsch and Sorkine 2008]. These operators can be
incorporated into our framework in a similar way. However, depend-
ing on the particular integration model, different forms of energy
gradient operators need to be discretized. For instance, for constant
barycentric integration, energy gradients need to be estimated along
the internal dual edges of the mesh.

5. APPLICATIONS

We demonstrate our approach for a number of typical problems P
from geometry processing. The minimization of quadratic energies
on meshes is ubiquitous in this application domain. The particular
problems, their discretizations and solutions have been addressed in
a range of prior work. We reference representative work and describe
how the problem-specific discretization (E, c) is set up. We try to
keep this description abstract to emphasize the main differences
of the particular settings. We do not recap the setup and elimina-
tion of boundary conditions, which is discussed, e.g., in [Botsch
and Sorkine 2008]. Most boundary conditions are “hard” interpola-
tion constraints like, for instance, Dirichlet conditions. Adding our
regularization is then a simple and generic procedure as described
above. Our examples include linear 2D shape deformations, nonlin-
ear deformations in 2D and 3D, planar and volumetric continuous
deformations, as well as surface parametrization. Note that none
of the problems is ill-posed in the first place and all problems are
solvable even without regularization. We show, however, that all
approaches are enhanced by our regularization, i.e., by minimizing
smoothed quadratic energies.

5.1 Linear Planar Deformations

Shape deformations P of two-dimensional planar meshes xi ∈ R2

are displacement maps u(x) : R2 → R2 with u(xi) = ui, i ∈ V
that are piecewise linear on each triangle t ∈ T : u(x) = Ft x + tt.
A common approach to defining energy minimizing elastic deforma-
tions is to measure the difference of a particular deformation from a
prototype deformation. Then the optimal deformation is given by
the energy minimizing solution u?. As deformations are piecewise
linear, the 2 × 2 deformation gradient tensor field Ft(u) is con-
stant on each triangle. Isotropically integrated translation-invariant
discrete deformation energies are therefore given by

EP(u) =
∑
t∈T

At ||Ft −T(Ft)||2F , (11)

with triangle areas At and closest 2 × 2 prototype deformation
gradient tensors T(Ft). Different choices for T will be discussed
in the following paragraphs. As Ft is the gradient of u on a triangle
t, it can be computed using a 2× 3 gradient operator Gt(x): Ft =
Gt Ut. We use a 2D gradient operator that computes gradients
in a common global coordinate system to be able to apply our
regularization. It is given for a triangle t = (i, j, k) by

Gt =

[
(xj − xi)

T

(xk − xi)
T

]−1(
−1 1 0
−1 0 1

)
(12)

(see, e.g., [Botsch and Sorkine 2008] for a derivation). It is con-
venient to define a linear 4 × 6 operator Ht =

[
Gt

Gt

]
P with

an appropriate permutation P, such that vec(Ft) = Ht ut is the
column-wise vectorization of Ft, i.e., the stacked gradients of all
displacement coordinate functions.

As-similar-as-possible (ASAP). We call deformations as-
similar-as-possible (ASAP) if they are approximately conformal,
i.e., angles should be preserved. Here, we use a characterization
that is similar to the one given by Liu et al. [2008]. Discrete 2D
deformations are conformal in the least-squares sense if all defor-
mation gradients Ft =

(
f11 f12
f21 f22

)
are as close as possible to the

closest 2D similarity matrix S ∈
{(

a b
−b a

)
: a, b ∈ R

}
that mini-

mizes ||Ft − S||2F . The similarity minimizing this distance is

S?t =
1

2

(
f11 + f22 f12 − f21
f21 − f12 f11 + f22

)
.

The prototype deformation tensor in (11) is therefore given by the
closest similarity T(Ft) = S?t . T is linear in Ft for this case
of angle-preserving or as-similar-as-possible deformations. Each
triangle-constant local energy term of the summation in (11) can
thus be written as ||Et ut||2 with local 4× 6 energy operators

Et =
1

2

(
1 0 0 −1
0 1 1 0
0 1 1 0
−1 0 0 1

)
Ht .

The local operators Et on individual triangles can then be assembled
into the single global 4 |T | × 2 |V| operator E to give the energy
(11) in the general form (8):

E =

(∑
t∈T

Λt,t
|T |,|T | ⊗Et

)
Q , c = 0 . (13)

Here, Q is an appropriate replication matrix that selects all ui
associated with a particular triangle, and Λt,t

|T |,|T | is a single-entry
matrix (see Section 4). This description of the as-similar-as-possible

ACM Transactions on Graphics, Vol. XX, No. XX, Article XX, Publication date: XX XX.



6 • J. Martinez Esturo et al.

deformation energy is then suitable for regularization by (9). For
this problem, we have n = 4 as each triangle has four associated
energy components.

Linearized as-rigid-as-possible (LARAP). 2D deformations
that are as-rigid-as-possible are commonly computed by optimizing
for deformation gradients that are close to rotations. Due to the non-
linearity of rotations, this optimization generally requires iterative
schemes (see Section 5.2). Linearization of rotations is used to avoid
nonlinear problems. However, this simplification is often considered
defective as large rotations lead to linearization artifacts. Still, we
show that even this linearized setting gives more competitive results
with our smoothed energy.

The rotation R ∈
{(

cos(α) sin(α)
− sin(α) cos(α)

)
: α ∈ R

}
that minimizes

||Ft −R||2F has an optimal rotation angle of α? = tan−1(a) with
a = f12−f21/f11−f22, and is given by

R?
t =

1√
a2 + 1

(
1 a
−a 1

)
. (14)

A linearized approximation R†t ≈ R?
t is obtained from a Taylor

series expansion of R?
t around I2:

R†t =
1

2

(
2 f12 − f21

f21 − f12 2

)
.

Then we identify T(Ft) = R†t as the prototype deformation tensor
in (11) that gives a (linearized) quadratic energy that measures devi-
ation from rigidity. Triangle-constant local energies ||Et ut − ct||2
are then given by

Et =
1

2

(
2 0 0 0
0 1 1 0
0 1 1 0
0 0 0 2

)
Ht , and ct =

(
1
0
0
1

)
.

Similar to (13), the global energy matrix E is composed block-wise
of all Et, and c is obtained by stacking all ct. Again, the number of
local energy components is n = 4.

5.2 Nonlinear Planar Deformations

The nonlinear as-rigid-as-possible (ARAP) energy is (11) with exact
rotations T(Ft) = R?

t as deformation gradient prototypes [Igarashi
et al. 2005]. The optimization of these energies, which are nonlinear
in u, is often performed iteratively with alternating linearizations
[Sorkine and Alexa 2007; Liu et al. 2008] or by directly using
nonlinear solvers [Chao et al. 2010; Lipman 2012]. We focus on
the first type of iterative optimization, which is most related to
our framework as each step minimizes a quadratic energy. In each
iteration k an intermediate solution uk is improved by computing the
closest rotations to the deformation gradients Fkt of uk relative to the
initial shape x. Here, R?

t of (14) could be used. A numerically more
stable variant of this polar decomposition is based on the singular
value decomposition (SVD) Fkt = S Σ TT, such that R?

t = S TT

is the polar decomposition of Fkt . (There are alternative methods
to obtain the polar decomposition.) Furthermore, we require the
assumption that there is no reflection, i.e., we have det

(
S TT

)
=

+1. The nonlinear computation of optimal rotations is performed
locally per triangle and does not involve any regularization. It is the
prerequisite for the next step: the definition of a quadratic energy for
the (k + 1)-th iteration step. Therefore, the matrices R?

t are used
as the target deformation gradients to reconstruct the coordinates of
uk+1 in the least-squares sense. Reconstruction errors are triangle-
constant due to the constant gradients of u. Using Ft = Gt Ut, the
corresponding integrated piecewise constant reconstruction energy

(11) can be decomposed into component-wise functions U:

EP(u
k+1) =

∑
t∈T

At
∣∣∣∣Gt U

k+1
t −R?

t

∣∣∣∣2
F

=
∣∣∣∣G Uk+1 −Ck

∣∣∣∣2
An

. (15)

This is a global energy similar to (13) with

G =

(∑
t∈T

Λt,t
|T |,|T | ⊗Gt

)
Q , Ck =

∑
t∈T

Λt,1
|T |,1 ⊗R?

t , (16)

n = 2, and an appropriate replication matrix Q. The global gradient
operator G is sparse with a dimension of 2 |T | × |V|, and C is a
dense 2 |T | × 2 matrix. Again, this energy has the form (8) with
(E,C) = (G,Ck), i.e., a matrix norm (7) is used, and regulariza-
tion (9) is straightforward. Also, note that system factorization only
has to be performed once and can be reused in each iteration as both
G and Wn are discretized on the initial mesh x and independent of
the iteration k. This means that in every step the solution uk+1 is
obtained from back-substitution.

The particular energy type with E = G representing a discrete
gradient operator has a more general interpretation. The discrete
energy (15) allows to fit scalar fields u onM to prescribed gradients
c. In the ARAP case, these are (component-wise) deformations u
and prescribed deformation gradients R?. In general, minimizers
of this type of energy operator are described by the well-known
discrete Poisson equation that is here equivalent to (10) for β = 0.
Therefore, by using Wn instead of An any Poisson-type energy on
meshes (see, e.g., [Pinkall and Polthier 1993; Botsch et al. 2010])
can be regularized using our approach.

5.3 Surface Deformations

Not only 2D planar, but also 3D surface-based deformations can
be regularized in the same way in our framework. For example, the
planar ARAP deformations of the previous section can directly be
extended to 3D surface deformations described by xi,ui ∈ R3 and
regularized subsequently. The surface-based ARAP energies can be
setup using vertex one-ring transformations as described by Sorkine
and Alexa [2007]. We provide an alternative formulation that is
more triangle-centric.

For regularization we require 3 × 3 deformation gradients in a
common coordinate system. We compute F̃t = Gt Ut using a 3×3
extension of the gradient operator (12) for triangles t = (i, j, k)

Gt =

(xj − xi)
T

(xk − xi)
T

nt
T

−1−1 1 0
−1 0 1
0 0 0

 , (17)

where nt is the normalized triangle normal of t in the original x
coordinates, such that the gradients of the coordinate functions of
u lie in the triangle planes of x in R3. However, closest rotations
to F̃t are not well-defined yet as the F̃t are singular in direction
nt. One can combine the ARAP local rotation optimization with
the handling of this singularity in a single step by using the 3× 3

SVD F̃t = S̃ Σ̃ T̃T: the closest 3D rotation to the deformation
gradient is R?

t = S TT, where S and T are derived from S̃ and T̃
by replacing their column that corresponds to the vanishing singular
value in Σ̃ with nt and nkt , respectively. Here, nkt is the normalized
normal of t in the deformation uk. Given local rotations optimized
this way as target deformation gradients, the global deformation
reconstruction in each iteration is analogous to (15) with (16). In
fact, the resulting Poisson system is equivalent to (15), except that
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now n = 3 and the 3D versions of Gt and R?
t are used to setup

(E,Ck). All properties are inherited from the 2D case, and most
importantly this way also surface deformations based on 3D ARAP
energies can directly be regularized.

5.4 Continuous Deformations

All deformation examples discussed so far are described by a map
from the initial coordinates x to the coordinates of the deformed so-
lution u. This map is obtained directly as the minimizer of an elastic
deformation energy. An alternative way to describe planar defor-
mations is a continuous formulations where ui(s) ∈ R2 represent
time-dependent tangent velocity fields at a specific time s. Deforma-
tions are then obtained by integrating an initial shape x along u(s)
forward in time, giving time-dependent, continuous deformations
x(s). This requires evaluation of u(s) on different deformed x(s),
and vector fields are obtained by optimizing energies in u.

Solomon et al. [2011] propose discretized energies that are
quadratic in u and yield near-isometric planar deformations. These
as-Killing-as-possible (AKAP) energies are of the form

EP(u(s)) =
∑
t∈T

At
∣∣∣∣Jt + Jt

T
∣∣∣∣2
F
.

This energy measures the squared distance of the 2× 2 vector field
Jacobians Jt

T = Gt Ut from Jacobians of exact isometric vector
fields (known as Killing vector fields), which are anti-symmetric.
Here, we reuse the gradient operator (12), with the difference that
it has to be discretized on the current x(s) for each evaluation of
the vector field. Vector field Jacobians, which represent a different
gradient type, are constant per triangle, and therefore the energy
is also local per triangle and fits our setting. The local energies
||Et ut||2 are given by the local 4× 6 energy operators

Et =

(
2 0 0 0
0 1 1 0
0 1 1 0
0 0 0 2

)
Ht ,

and the global (E, c) are equivalent to (13) using these local opera-
tors and n = 4.

The same formulation holds for the deformation of 3D volumetric
shapes. In this case we have Jacobians J ∈ R3×3, and At is the
volume of a tetrahedron.

5.5 Surface Parametrizations

The parametrization of a surface mesh can be considered as the
computation of a map from the surface coordinates xi ∈ R3 to
coordinates ui = (ui, vi)

T ∈ R2 in the parametrization domain.
This map should minimize some type of distortion.

As-conformal-as-possible. Discrete near-conformal parame-
trizations are obtained by satisfying the Cauchy-Riemann conditions
∇u = Rπ/2∇v in the least-squares sense: this yields the least-
squares conformal maps (LSCM) by Levy et al. [2002]. (A different
approach that yields identical solutions was proposed simultaneously
by Desbrun et al. [2002].) The corresponding discrete and integrated
energy can be written as

EP(u) =
∑

(i,j,k)=t∈T

At

∣∣∣∣∣∣Gt (ui, uj , uk)
T −Rt Gt (vi, vj , vk)

T
∣∣∣∣∣∣2

(see, e.g., [Botsch et al. 2010]). Here, we use the surface-based gra-
dient operator (17) for gradients in a common 3D coordinate system,
and Rt(·) ≡ nt×(·) are 3×3 rotation matrices performing π/2 rota-
tions of vectors in each triangle plane. The corresponding local ener-
gies ||Et ut||2 are given by the 3×6 operators Et = [Gt −RtGt ]P

with an appropriate permutation P for the coordinate-wise gradient
computation. The global energy is described by (E, c = 0), where
the linear operator is setup as in (13) but using Et as described here
with n = 3.

As-rigid-as-possible. As shown by Liu et al. [2008], the ARAP
energy used in Section 5.2 can also be employed to compute surface
parametrizations with low distortions. To perform the local 2D
rotation optimization we compute the constant basis functions of a
2D gradient operator Gt in the parametrization domain. This can
be done by transforming each triangle t = (i, j, k) separately from
3D to 2D and computing the 2× 3 operators by

Gt =
(
S Rt

[
xj − xi xk − xi

] )−T(−1 1 0
−1 0 1

)
. (18)

Here, Rt is the rotation that transforms nt into (0, 0, 1)T to align
each triangle locally with the xy-plane, and S = ( 1 0 0

0 1 0 ) projects
edge vectors into this plane. By transforming each triangle t by
S Rt we essentially obtain undeformed 2D reference triangles for
the original 3D surface triangles. A parametrization uk at iteration
k then defines 2 × 2 deformation gradients Fkt = Gt U

k
t , and

closest rotations R?
t can be fitted as before. Then the global Poisson-

based reconstruction of uk+1 is identical to (15) and (16), which
can be regularized with β > 0. Note that the definition of the
global 2D gradient operator G (16) by using (18) does not require a
continuous reference mesh in the parametrization domain. In fact,
the connectivity of the meshM defines continuity of the solution.

6. RESULTS

In this section we show experimental results and provide compar-
isons. If not stated otherwise, boundary constraints are “hard” in-
terpolation constraints, which can be interpreted as pins or handles
on vertices. They are rendered as blue spheres. The color-codes
visualize the local energies of EP per triangle.3 Note that in general
the plain energy cases (β = 0) correspond to the original results as
published, e.g., in [Liu et al. 2008].

Figure 1 shows the effect of our method for different types of
2D deformations for different shapes. We minimize the ASAP,
LARAP (Section 5.1), and ARAP (Section 5.2) energies for β ∈
{0, 0.2, 0.4}. The local variation of energy decreases for increasing
amount of energy smoothing. The plain energy solutions suffer from
high distortion and flipped triangles near the handles for both ARAP
energy types. Our regularization corrects these artifacts, and espe-
cially the LARAP results show greatly improved quality. Moreover,
global self-intersections of plain deformations, which are most no-
table in the ASAP case, are suppressed in the regularized solutions,
although the regularization is not designed to directly prevent this
type of artifact.

We show a simple example of a 3D surface deformation minimiz-
ing the ARAP energy in Figure 2. The side and the rear (not shown)
of the beetle surface were fixed, and a vertex on the engine hood was
moved to deform the shape globally. We show results for both “soft”
constraints, which only approximate the handle, and interpolating
“hard” handle constraints. In both cases the regularized energy yields
smooth deformations that respect the particular constraints, whereas
the original energy suffers from artifacts that appear near the han-
dle vertex. This experiment backs the claim that our approach also

3The additional material contains a video showing further interactive results,
a MATLAB reference implementation with a planar deformation demo, as well
as all result meshes of the paper with annotated flipped elements.
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β = 0 β = 0.2 β = 0.4

ARAP

LARAP

ASAP

ARAP

ARAP

LARAP

LARAP

ASAP

ASAP

Fig. 1. Regularized 2D deformations. Different 2D shapes are deformed using the different original (β = 0) and regularized (β > 0) 2D deformation energies.
The color-coded images visualize local energies of EP on each triangle (low •, high • energy). For β ∈ {0, 0.4} closeups visualize energies at critical regions
that contain highlighted high distortions as well as local and global self-intersections. Pharao image courtesy openclipart.org, alligator image from [Jacobson et al. 2011].
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ARAP

β = 0

β = 0

β = 0.3

β = 0.3

Fig. 2. Regularized ARAP surface deformation. The side and rear (not
shown) of the beetle surface are fixed and a vertex on the engine hood
is moved to deform the shape such that the ARAP energy is minimized.
We show results for both “soft” (•, top) and interpolating “hard” handle
constraints (•, bottom). Our regularized solution is artifact-free in both cases.

Beetle mesh courtesy Aim@Shape.

works for 3D surface deformations. In particular, ARAP surface
deformations show better results.

We apply our regularization to continuous deformations that min-
imize the AKAP energy in Figure 3. To emphasize total distortions
we color-code isometric distortions relative to the original shape.
Plain (β = 0) deformations show notable artifacts as identified
by Solomon et al. [2011]. Their filtering method requires the so-
lution of an additional Poisson system that introduces additional
distortions and only approximates user constraints. Our method also
avoids deformation artifacts, however, and in contrast, we only re-
quire a single linear system solve and guarantee exact satisfaction
of constraints. The tetrahedral eagle model (right) is an example for
minimizing smoothed quadratic energies on volumetric domains.

Figure 4 shows examples for parametrizations minimizing LSCM
and ARAP energies. We compare plain (β = 0) and smoothed
(β > 0) energies. The boundary of the beetle parametrization (left)
was fixed, and the positions of four interior vertices were prescribed.
Our regularized LSCM solution has no flipped triangles near the
handles. The gargoyle model (right) was cut open and mapped to
the plane. (The same cut-open mesh was used in the original work
[Liu et al. 2008].) Again, interior vertices were fixed. This is an
action that is highly relevant in practice for locally “fine-tuning”
maps. At the same time this is highly problematic as “spikes” and
fold-overs arise quickly, which demands for nonlinear methods. Our
ARAP regularization (β = 0.3) handles this case and provides a
valid solution without flipped triangles (see closeups).

We compare our approach to standard Tikhonov regularization in
Figure 5. The 2D giraffe shape is deformed, and a parametrization of
the 3-balls surface is computed both by minimizing an ARAP energy.
Tikhonov regularizers ETR of (5) that penalize first (Γu ≡ ∇u) and
second-order (Γu ≡ ∇2u) variation of the solution u are applied
for β = 0.25 and β = 0.5. Also, we apply first and second-order
Tikhonov regularizers of the displacement field d = u−x given by
the difference of the solution to the initial shape x. We compare to
our regularizer ER for β = 0.25 (right hand side for each example).
First-order Tikhonov regularization of u yields smoother but unde-
sirably “shrunken” results of high energy. In fact, it even modifies
the initial zero-energy solution when handles are not moved at all
due to its “problem-independence”. Our proposed method does not
show this effect because both, the energy and the problem-specific
regularization terms, vanish on the initial pose. Shrinking and modifi-
cation of the zero-energy solution can be prevented for deformations

by instead regularizing displacement fields d, but artifacts close to
the handles are still not corrected. The results of standard second-
order Tikhonov regularization are not very sensitive to the amount
of regularization. However, this regularizer is also unable to prevent
common artifacts. Not shown are other typical choices of Γu like
penalizing solution magnitude (Γu ≡ I u): they do not remedy
undesired behavior either. This general statement holds similarly for
minimizing other energies.

Figure 6 compares our results with the nonlinear bounded dis-
tortion (BD-)maps proposed by Lipman [2012]. We consider near-
conformal deformations from minimizing BD-LSCM and ASAP
energies and near-rigid deformations from minimizing BD-ARAP
and ARAP energies. Without regularization (β = 0) we obtain
the undesired artifacts that were pointed out by Lipman (red cir-
cles). Adding our regularization β > 0 effectively removes artifacts
and yields valid shapes without local self-intersections. Interest-
ingly, our solution with the smoother energy distribution for ASAP
(β = 0.25) shows significantly less global deformation compared
to BD-LSCM. The BD-ARAP and the regularized ARAP deforma-
tion show comparable results: regularized ARAP yields a smoother
energy distribution and a thinner neck of the dinosaur. The value
β = 0.085 is the smallest regularization parameter for which the de-
formation is artifact-free. Note that there are constraints on internal
vertices. This leads to a very visible artifact for the unregularized
ARAP (β = 0).

The experiment in Figure 7 shows that the proposed regularization
is not only problem-specific but also largely independent of the
particular mesh tessellation. We apply an ARAP deformation to
three different meshes that all represent the same geometry. Note that
this particular shape with thin parts and relatively long boundary is
a nontrivial benchmark. The tessellations are challenging as triangle
areas vary up to 1.7 · 103 %, and the triangle circumcircle to incircle
radius ratio is up to 38.8. The results are similar for all tessellations,
we show this for two different values of β. This indicates that our
discretization in Section 4 is reasonable.

7. DISCUSSION

We tested our regularization on a number of typical problems in
geometry processing and showed experimental results. Our approach
fits problems in this application domain, but it is generally not
limited to geometry processing.

Need for Regularization. It is noticeable that in particular for
these applications, regularization is commonly not considered at
all. The reason is probably simple: first, standard Tikhonov regu-
larization is available but it does not fit the problems and yields
rather undesired results. Second, most discretized problems are not
ill-posed in the classical sense, as unique and stable solutions exists,
and any regularization might increase the energy EP that character-
izes the problem. The first argument seems true as indicated by our
experiments. This holds also for the very popular Tikhonov-type
regularization to prefer “soft” constraints, i.e., a penalty term as
regularizer, over “hard” constraints, i.e., constraint interpolation by
elimination, in order to suppress or smooth out artifacts near han-
dles. Soft-constraints, however, have their drawbacks: artifacts only
appear later but are not effectively suppressed (see Figure 2), and in
addition, the solution may “float” in the domain if no point is fixed
by a hard-constraint. We refer to, e.g., Solomon et al. [2011], who
describe this effect. There are exceptions to the second argument:
for instance, minimizing the AKAP energy [Solomon et al. 2011] is
an example for a problem that is not ill-posed, though it inherently
requires regularization. However, there the standard approach of
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AKAP

β = 0

β = 0.3

AKAP

β = 0 β = 0.3

Fig. 3. Regularized continuous deformations. The AKAP energy is minimized and the resulting vector field is integrated for a planar triangle mesh (top) and a
volumetric tetrahedral mesh (bottom). The color-coded visualizations show local isometric distortions relative to the rest-pose. Artifacts of the original energies
(β = 0) are highlighted (•). Woody image from [Jacobson et al. 2011], eagle data from [Chen et al. 2009].

LSCM

β = 0 β = 0.4

ARAP

β = 0.3β = 0.0

Fig. 4. Regularization of parametrizations. Left: LSCM of the beetle with boundary and four interior vertices fixed in the plane. Right: ARAP parametrization
of the gargoyle with constraints on interior vertices. In contrast to the original solutions our regularized solutions are free of triangle flips (see closeups).

Beetle mesh courtesy Aim@Shape, gargoyle mesh from [Liu et al. 2008].

ER ARAP

β = 0.25 β = 0.25β = 0.5

ETR

Γu ≡ ∇u

ER
ETR

β = 0.25 β = 0.25 β = 0.25β = 0.5

ARAP

Γu ≡ ∇u

Γu ≡ ∇2u

Γu ≡ ∇d

Γu ≡ ∇2d

Fig. 5. Comparison to Tikhonov regularization. The ARAP energy is minimized to deform the giraffe (left) and to parametrize the 3-balls surface (right) using
different regularizers and β values: standard first (Γu ≡ ∇·) and second-order (Γu ≡ ∇2·) Tikhonov regularization ETR of the solution u and displacement
field d = u− x and our regularizer ER. Compared to Tikhonov regularization our results show no shrinking behavior and are free of flipped triangles (•).

Giraffe image courtesy openclipart.org, 3-balls mesh from [Liu et al. 2008].

BD-LSCM ASAP β = 0 β = 0.25 BD-ARAP ARAP β = 0 β = 0.085

Fig. 6. Comparison with nonlinear BD-maps [Lipman 2012]. Near-conformal (left) and near-rigid (right) deformations of the initial models (•) using bounded
distortion mappings and our corresponding regularized energies (β > 0). Artifacts of the original energies (β = 0) are highlighted (•).

Square and dino meshes and BD-maps results from [Lipman 2012].
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β = 0.2

β = 0.45

ARAP

Fig. 7. Mesh dependence. A differently tessellated regular grid is deformed
using the same deformation constraints by minimizing the regularized ARAP
energy for two β values. Other regularized energies show similar results.

incorporating smoothness of the solution, i.e., standard Tikhonov
regularization, would lead to the demonstrated undesirable results.
For this reason, Solomon et al. propose an additional Poisson-based
smoothing step as a post-process.

In a more general view, the observed artifacts near pointwise con-
straints are a problem of discretization: in the continuous problem
setting, prescribing pointwise constraints in the interior of the do-
main is not a well-posed problem, as solutions of the corresponding
first-order variational problems generally ignore these constraints
(see, e.g., [Braess 2007]). When discretizing these continuous prob-
lems, discrete solutions may exists but can degenerate under differ-
ent discretizations, leading to noticeable artifacts and the need for
regularization.

Hence, we conclude that in comparison to standard problem-
independent Tikhonov regularization, our problem-specific approach
provides the (more) desirable results: unregularized zero-energy
solutions are still zero-energy solutions of the regularized problem.
Even more, the regularization enables imposing “hard” interpolation
constraints not only on the boundary. Our experiments show that
constraints inside the domain are possible, at least to some extent.
This makes minimizers of regularized quadratic energies competitive
with solutions from nonlinear optimization. Of course there is no
guarantee that, e.g., triangle flips are avoided.

Nonlinear Optimization. Quadratic energies are attractive as
models because their minimization is straightforward and numeri-
cally efficient. However, the range of problems that can be modeled
by quadratic energies is of course limited. In many settings, non-
linear models are required or preferred. A prominent example is
imposing general constraints or bounds on variables. This is often
done to guarantee properties of the solution, as demonstrated re-
cently by Aigerman and Lipman [2013] and Schüller et al. [2013].
We consider the work by Lipman [2012] as a typical example: a
sophisticated nonlinear model guarantees bounded conformal distor-
tion and validity of piecewise linear 2D (deformation) maps. The
type of distortion is general, and validity refers to the absence of
triangle flips. This is much more than can be expected from a linear
setting, i.e., quadratic energy minimization, but it requires the more
expensive solution of a nonlinear problem, i.e., one has to invest
more time and/or reduce the problem size. Note that in this case
the bounds on variables, which restrict the solution space, could
be interpreted as a regularization. If a feasible solution exists in
this space then it satisfies the guarantees by construction. Having
similar guarantees is generally not possible within our setting of

quadratic energy minimization. The comparisons by Lipman reveal
these problems, they show up early and frequently for typical de-
formation tasks. This changes, however, for quadratic energies that
are smoothed by our approach. There are still no guarantees, but
our experiments show that the regularized solutions get significantly
closer to results from nonlinear optimization. And if they break, i.e.,
they yield an invalid result, this happens relatively late, meaning for
extreme deformations imposed by “large” movement of handles.

We conclude that although our regularization cannot provide
similar guarantees as nonlinear optimization, minimization in the
regularized function space yields competitive results in an efficient
way that seem to remain valid for a considerable range of input
constraints. This is not possible without or even with standard reg-
ularization. In contrast to the mentioned nonlinear methods our
regularization is not restricted to deformation-type problems of 2D
and 3D shapes, but additionally supports, e.g., surface deformations
and vector field-based problems.

Cost. The setup of the matrix Wn and the regularized normal
equations (10) takes more operations than the initial setup (8). More
importantly, for sparse operators the new system matrix has more
nonzero entries. Our experiments show that there is no significant
effect on sparsity of the Cholesky factors L and on overall timings
compared to having no regularization. Moreover, the overhead is
on par with that of standard Tikhonov regularization penalizing
second-order variation of the solution.

Limitations. Our regularization is restricted to quadratic ener-
gies on discrete domains. This is a standard scenario for geometry
processing. We are not limited to such scenarios but it may be the
case that the penalization of energy variation pays off in particular
for this sort of applications. The penalization of variation in the
solution may be better suited for other applications. In particular,
for general inverse problems a more general regularization based on
the (generalized) singular value decomposition with filtering of sin-
gular values and the possibility for parameter estimation is generally
preferred [Hansen 2010]. However, for geometry processing this is
usually less suited as global SVD computations generally turn out
to be too expensive.

We show empirically that the minimization of smoothed quadratic
energies tends to get close to solutions from nonlinear optimization.
There is of course no guarantee for such behavior. In particular,
the regularized solutions tend to break later but they will break, i.e.,
represent an invalid result, at some point for large handle movements.
Moreover, there is no a priori optimal choice for β. Although β is not
critical for the systems to be solvable, its “optimal” value is certainly
problem-dependent, and the applicability of automatic parameter-
choice techniques has to be studied. Regularization of quadratic
energies is therefore not a substitute for nonlinear models with
guarantees, but it may complement these models: the regularized
solution can be computed quickly. If it is valid (and satisfies any
other criteria) it may be used directly. Otherwise it may serve as an
initial guess for a nonlinear solver.

8. CONCLUSION

Many problems can be formulated as the minimization of a quadratic
energy. We proposed a generic construction of smoothed quadratic
energies: the input consists of any quadratic energy that is integrated
in a discrete domain, which is given as a partition of simplices. The
output consists of a new energy that incorporates a problem-specific
regularization. This construction is generic and can be applied in a
straightforward way if the problem is given in a standard form (8).
Essentially, we can interpret our regularization as a simple change
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of the norm that is minimized. The key observation of our approach
is that the energy, which characterizes the problem, should explic-
itly contribute to the regularization. This makes our regularization
different from standard methods based on Tikhonov regularization:
it enforces low energy variation instead of a smooth solution. We
applied our regularization to a number of geometry processing ap-
plications. Our experiments reveal the advantages of incorporating
regularization, and they indicate that our regularizers are appropriate
for various energies and fit a range of problems.

ACKNOWLEDGMENTS
We would like to thank the anonymous reviewers for their thorough
and constructive comments and suggestions. We thank Maik Schulze
for his help with rendering results and for providing mesh data. The
3-balls and gargoyle meshes are provided by [Liu et al. 2008],
the BD-maps results are from [Lipman 2012], the eagle data is
provided by [Chen et al. 2009], the beetle mesh is used courtesy of
Aim@Shape, and we use image data provided by [Jacobson et al.
2011] and openclipart.org.

REFERENCES

Noam Aigerman and Yaron Lipman. 2013. Injective and Bounded Distortion
Mappings in 3D. ACM Trans. Graph. (Proc. SIGGRAPH) 32, 4 (2013),
106:1–106:14.

Marc Alexa and Max Wardetzky. 2011. Discrete Laplacians on general
polygonal meshes. ACM Trans. Graph. (Proc. SIGGRAPH) 30, 4 (2011),
102:1–102:10.

P. Alliez, D. Cohen-Steiner, Y. Tong, and M. Desbrun. 2007. Voronoi-based
variational reconstruction of unoriented point sets. In Proc. SGP. 39–48.

M. Botsch, L. Kobbelt, M. Pauly, P. Alliez, and B. Levy. 2010. Polygon
Mesh Processing. AK Peters.

Mario Botsch and Olga Sorkine. 2008. On Linear Variational Surface
Deformation Methods. IEEE TVCG 14, 1 (2008), 213–230.

Dietrich Braess. 2007. Finite Elements - Theory, Fast Solvers, and Applica-
tions in Solid Mechanics (3rd ed.). Cambridge University Press.

Isaac Chao, Ulrich Pinkall, Patrick Sanan, and Peter Schröder. 2010. A
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Biharmonic Weights for Real-Time Deformation. ACM Trans. Graph.
(Proc. SIGGRAPH) 30, 4 (2011), 78:1–78:8.

Ladislav Kavan, Dan Gerszewski, Adam Bargteil, and Peter-Pike Sloan.
2011. Physics-inspired Upsampling for Cloth Simulation in Games. ACM
Trans. Graph. (Proc. SIGGRAPH) 30, 4 (2011), 93:1–93:9.
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APPENDIX

We show that the total regularized energy E(u) in (3) is equivalent
to (9), and the induced norm ||·||Wn

is well-defined for β ∈ [0, 1),
i.e., Wn is positive definite. For the residual vector r = Eu− c we
obtain

E(u) = (1− β) ||r||2An + β ||Dn r||2Bn
= (1− β) rTAn r + β rTDn

TBn Dn r

= rT
(
(1− β)An + βDn

TBn Dn

)
r

= rTWn r = ||r||2Wn
.

The derivation is similar for matrix residuals R = EU−C.
Assuming non-degenerate meshes, the integration matrices An

and Bn are diagonal with strictly positive entries, i.e., they are
positive definite. The discrete difference operator Dn is rank defi-
cient and has a nontrivial kernel spanned by the constant functions.
Therefore, Dn

TBn Dn is symmetric and positive semi-definite, i.e.,
yTDn

TBn Dn y ≥ 0 for y 6= 0. Positive definiteness of Wn

follows from the linearity of sums as for y 6= 0 and β ∈ [0, 1) we
have yTAn y > 0 and

yTWn y = (1− β)yTAn y + β yTDn
TBn Dn y > 0 .

Therefore, our norm ||·||Wn
is well-defined for β ∈ [0, 1).

Received July 2013; accepted April 2014

ACM Transactions on Graphics, Vol. XX, No. XX, Article XX, Publication date: XX XX.


