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Abstract
Stream surfaces are a well-studied and widely used tool for the visualization of 3D flow fields. Usually, stream
surface seeding is carried out manually in time-consuming trial and error procedures. Only recently automatic
selection methods were proposed. Local methods support the selection of a set of stream surfaces, but, contrary to
global selection methods, they evaluate only the quality of the seeding lines but not the quality of the whole stream
surfaces. Global methods, on the other hand, only support the selection of a single optimal stream surface until
now. However, for certain flow fields a single stream surface is not sufficient to represent all flow features.
In our work, we overcome this limitation by introducing a global selection technique for a set of stream surfaces.
All selected surfaces optimize global stream surface quality measures and are guaranteed to be mutually distant,
such that they can convey different flow features. Our approach is an efficient extension of the most recent global
selection method for single stream surfaces. We illustrate its effectiveness on a number of analytical and simulated
flow fields and analyze the quality of the results in a user study.

This is the author’s preprint. The definitive version is available at diglib.eg.org and onlinelibrary.wiley.com.

1 Introduction

Flow visualization is one of the core topics in Scientific Vi-
sualization. The visual analysis of flows is especially chal-
lenging for 3D vector fields. In 3D, the interactive placement
and integration of stream surfaces is a standard approach
for exploration of the global flow behavior [ELC∗12]. How-
ever, since the space of all stream surfaces is too large for
systematical manual exploration [MSRT13a], the problem
of automatically selecting suitable stream surfaces is crucial
for a successful visualization. Necessary building blocks of
purposeful automatic solutions to this problem are a quantifi-
able concept of stream surface quality and an algorithm for
computing optimal solutions from the search space.

A number of methods has been proposed for computing
seed curves of stream surfaces that cover the flow domain
densely. All these methods evaluate local measures only, such
as pointwise vector field quantities. Therefore, they compute
locally optimal solutions in the sense that no global analysis
of the search space of all possible surfaces and measurements
of surface-based optimality are performed.

In contrast, Martinez Esturo et al. [MSRT13a] propose an
approach to find the globally optimal stream surface w.r.t.
new quality measures. Their approach is driven by two ob-
servations. Firstly, characteristic stream surfaces cannot be
found by searching for locally optimal seed curves only: even
for such seed curves the stream surface might result in a
poor flow visualization when integrated away from the seed
curve. Hence, finding globally optimal stream surfaces re-
quires surface-based quality measures. Secondly, since opti-

mal stream surfaces are likely to occupy large portions of the
flow domain and stream surfaces tend to occlude each other,
it is preferable to select a single representative surface.

Although in many cases one single optimal stream surface
gives a good representation of the flow, there are exceptions:
in certain types of flow even the optimal stream surface may
depict only parts of these flows, leaving other phenomena
unrepresented. Examples for this are “compartment flows”
with a domain divided into several different regions with low
inter-region flow and distinct flow features. In such cases, an
optimal set of stream surfaces has to be selected.

This paper solves the following problem: given a 3D steady
vector field, find k stream surfaces such that they describe
the vector field “best”. Here, k is assumed to be rather small,
usually below ten. Martinez Esturo et al. [MSRT13a] solve
this problem for the special case k = 1. In this paper, we
present an extension and generalization to k ≥ 1. Our goal is
to find k stream surfaces such that the following conditions
are satisfied: first, all selected surfaces optimize a common
global quality criterion. Second, each surface should describe
different aspects of the flow in a sense that they should not be
mutually close to each other and avoid redundancy. The first
condition is addressed in [MSRT13a] for k = 1. The second
condition makes the selection of k > 1 surfaces a nontrivial
problem, because generally both conditions are contradictory:
if one globally optimal stream surface is found, the “next
better” candidates will likely be close to this surface. This
would result in a number of high quality but also very similar
stream surfaces [MSRT13a].
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The approach presented in this work strives towards a
reasonable balance of the two conditions. It builds upon
[MSRT13a] to select one globally optimal surface to make
sure that the most prominent flow properties are captured. In
fact, we follow their definition of optimal stream surfaces
and the search algorithm closely. Instead of selecting stream
surfaces based on a continuous priority measure, we rely on
an iterative optimization for building sets of optimal stream
surfaces. The basic idea is simple: in each step 1, . . . ,k select
the globally optimal stream surface, then restrict the search
space for subsequent selections. A naïve implementation of
this approach fails. Furthermore, the design of an efficient
and practical algorithm for the selection of multiple stream
surfaces based on this approach poses a number of challenges.
This includes an efficient estimation of inter-surface distances,
an adapted integration range of quality measures, as well as
the optimization for variable integration times.

2 Related Work

This section reviews prior work including integration, ren-
dering, and placement of stream surfaces – techniques which
serve as a basis for the selection of sets of stream surfaces.

Related to the problem of stream surface placement is the
placement of streamlines, which is, in general, less complex:
there is a unique streamline passing through each point of
the domain, whereas the number of stream surfaces passing
through a point is infinite. We refer to the survey by McLough-
lin et al. [MLP∗10] for an overview on streamline placement
methods.

Stream Surface Integration. There are many techniques
addressing the practical generation of (discrete) stream sur-
faces. The most prominent class of methods is based on
the work by Hultquist [Hul92] and uses an advancing front
scheme. For an excellent overview, we refer to the survey by
Edmunds et al. [ELC∗12] and the references therein. More
recent methods can be applied to large data sets [CGC∗12]
and scale integration time along the front line to obtain a near-
conformal parametrization of the surface [SGRT12], which
provides well-shaped elements in the discrete surface mesh.

Interactive Exploration using Stream Surfaces. Most
methods rely on manual placement of seed structures to ob-
tain stream surface geometries. Krüger et al. [KKKW05]
advect stream ribbons and particles for real-time flow explo-
ration. Martinez Esturo et al. [MSRT13b] approximate stream
surfaces by flux minimization, which provides advantages for
interactive exploration. There are numerous ways to improve
the appearance of stream surfaces. A general goal is to ensure
optimal perception of surface shape and directional informa-
tion of the flow within the surface. We refer to the surveys by
Laramee et al. [LvWJH04] and McLoughlin et al. [MLP∗10]
on visualization techniques for flow on surfaces. In recent
works, Born et al. [BWF∗10] enhance the visualization of
stream surfaces by illustrative techniques, and Hummel et
al. [HGH∗10] incorporate curvature and directional informa-
tion to improve perception of shape and flow. Carnecky et

al. [CFM∗13] take into account findings from cognitive re-
search to improve transparency. Günther et al. [GSM∗14] use
optimization to clear view on important regions of surfaces.
All these methods aim exclusively at generating and visualiz-
ing stream surfaces at interactive rates. They do not address
the automatic selection or placement of stream surfaces.

Stream Surface Placement. So far, only few methods have
been proposed for automatic or semi-automatic placement of
stream surfaces. Van Wijk [vW93] and Cai and Heng [CH97]
use stream functions to compute sets of evenly spaced stream
surfaces. Both approaches can only be applied on helicity-
free flows for which a stream function integral exists.

Later, focus shifted to vector field topology: Theisel
et al. [TWHS03] define and visualize saddle connectors,
Weinkauf et al. [WTHS04] propose boundary switch con-
nectors, and Peikert and Sadlo [PS09] extract topologically
relevant stream surfaces. Unfortunately, these methods may
extract either too many or not enough stream surfaces for
representative visualizations and require the computation of
vector field topology, which itself can be challenging for
complex data sets.

In a recent work, Edmunds et al. [EML∗12] propose the
use of isolines on domain boundaries to obtain evenly spaced
sets of stream surfaces by propagating seed curves into the
domain. Their method requires non-vanishing flux on domain
boundaries, and it strives explicitly for an even spacing of
stream surfaces. In a follow-up, Edmunds et al. [ELM∗12] use
clustering to obtain seed curve locations to integrate sets of
stream surfaces. Both approaches for seed structure selection
are solely based on local criteria of seed curves. In particular,
they do not evaluate any quality measure describing how well
the selected stream surfaces represent a given flow.

Martinez Esturo et al. [MSRT13a] define such surface-
based quality measures and propose an algorithm for find-
ing a globally optimal stream surface. Their optimization
method is designed to select only a single stream surface. It
is not suited for the selection of a representative set of stream
surfaces, as it would select a set of very similar and hence
redundant surfaces. In this work, we overcome this limita-
tion by extending their work: we compute sets of distinct
stream surfaces that are mutually distant and optimal w.r.t.
surface-based quality measures.

3 Background: Single Stream Surface Selection

We consider 3D steady differentiable vector fields v(x) with
associated Jacobian tensor fields J(x) over flow domains D.
Let the flow map φ

t(x) of v be the map describing the location
of a particle that is seeded at x after integration in v for an
integration time t. Then parametric stream surfaces s are
defined by parametric seed curves c(s) through integration as
s(s, t) = φ

t(c(s)).
In this paper, we extend the stream surface selection

method by Martinez Esturo et al. [MSRT13a] to the global
selection of sets of characteristic stream surfaces. In this sec-
tion, we briefly review the essentials of their approach before
describing our extensions.
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Figure 1: Algorithm Overview. We extend the single stream
surface optimization method [MSRT13a] (left) to the selec-
tion of multiple surfaces (right) by employing the selection
algorithm on an updated weighted domain graph (• cutaway
regions). Edge cost updates are based on restriction of ribbon
integration times by inter-surface distance enforcement. Our
selected set of stream surfaces for this BÉNARD compartment
flow example is shown in Figure 7.

The original method is designed to select a single stream
surface that optimizes a set of quality measures. The quality
measures are evaluated on narrow stream ribbons that are
integrated from edges of a spatial graph that covers the do-
main densely. This way, costs are assigned to each graph edge.
Then, a global optimization is performed for the path of mini-
mal costs and a given number of edges, which determines the
seed curve of the selected globally optimal stream surface.

Quality Measures. The quality measures of [MSRT13a] are
designed to prefer characteristic stream surfaces. They are
defined generically by integrated intrinsic surface properties,
i.e., they are application-independent as they are neither spe-
cialized nor restricted to a specific flow feature type.

The first quality measure considers the alignment of the
flow in the surface with principal curvature directions of the
surface. It describes the local variation of normal curvature in
flow direction and is therefore a measure of surface fairness.
Additionally, this measure has a perceptual interpretation in
that it measures how well flow is perceivable on the stream
surface. Formally, the local alignment error reads as ea =
nTJ (v×n)/||v||2 and depends on both local flow properties and
the surface orientation given by the surface normal direction
n. For optimization, the average squared alignment error is
considered by integrating e2

a over a stream surface s(s, t) with
full parametrization (s, t) ∈ [s0,s1]× [t0, t1]:

Ea =
1
A

∫ t1

t0

∫ s1

s0

e2
a ||ss × st || dsdt . (1)

Here, ss =
∂
∂s s and st =

∂
∂t s denote the partial derivatives of

the surface with area A. This averaged error is comparable
for stream surfaces of different area.

The alignment error Ea is the primary optimization tar-
get. However, it has trivial minimizers in form of planar
surfaces. To penalize trivial solutions, the second quality
measure considers the normal curvature κn = nTJ v/||v||2 of
a stream surface in flow direction. It is used to compute the
average squared normal curvature

Kn =
1
A

∫ t1

t0

∫ s1

s0

κ2
n ||ss × st || dsdt , (2)

which is generally maximized.

A third quality measure Ep penalizes seed curves that are
aligned tangentially to the flow and would lead to degen-
erate stream surfaces. Finally, the selection method tries to
maximize stream surface area A as a fourth quality measure.

Surface Selection. The algorithm in [MSRT13a] minimizes
these quality measures in order to automatically select a sin-
gle, globally optimal stream surface. An overview of this
algorithm is shown in Figure 1 (left). The basic idea of the
selection method is to find the optimal stream surface by con-
structing its seed curve out of optimal small curve segments.
The search space of seed curves is discretized using a domain-
spanning weighted graph (Figure 1 (top left)). Each edge has
an associated non-negative edge cost. Edge costs are com-
puted by evaluating the quality measures on narrow stream
ribbons that are integrated from each edge, i.e., they are a
weighted combination of terms considering Ea, Kn, Ep, and
A. The full domain integration by stream ribbons from each
edge is the costliest step, but it is mandatory for a global opti-
mization. Simple paths in this graph then serve as candidate
seed curves of larger stream surfaces that can be considered
as the union of all stream ribbons seeded at the edges of the
path. Stream surface quality can then efficiently be evaluated
by the sum of costs of each edge of the path. A global Sim-
ulated Annealing (SA) optimization [KGV83] is performed
that improves candidate paths until the globally optimal path
of minimal costs is found. The final optimal stream surface
s� is obtained by integrating from the selected path, which is
smoothed to a continuous curve prior to integration. Figure 1
(bottom left) shows an exemplary result.

For a detailed explanation of the method we refer to the
original work by Martinez Esturo et al. [MSRT13a]. Now,
we start to construct an algorithm for the selection of a set of
optimal and non-redundant stream surfaces.

4 Selection of Sets of Stream Surfaces

Flow data sets may contain only a single dominant global
feature. In these cases, the selection of a single globally opti-
mal stream surface is sufficient to represent and visualize the
flow [MSRT13a]. However, this assumption does not hold for
flow containing more than a single global feature: flows with
separate closed flow compartments are examples for this type
of data sets that cannot sufficiently be represented by a single
stream surface. Figure 1 exemplifies this for the BÉNARD

flow. Such flows require the selection of a set of characteristic
stream surfaces (cf. our BÉNARD result in Figure 7).

In the following, we extend the global stream surface selec-
tion method by Martinez Esturo et al. [MSRT13a] towards the
selection of a set Sk = {s�1, . . . ,s

�
k} of k ≥ 1 optimal stream

surfaces. Our approach is iterative, and in each iteration a set
Sk is extended by the optimal surface in the search space that
is restricted by the surfaces in Sk to give the next set Sk+1.

To achieve this, we introduce an efficient edge cost update
scheme, which is performed in every iteration. For efficiency,
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Figure 2: Inter-Surface Distance Field. For the globally
optimal stream surface initially selected by [MSRT13a]
in the TORNADO flow (left) we compute a distance field
using Euclidean Distance Transform (• volume rendering,
dmin = 8l/100) (center). It is used to restrict the search space
for further selected stream surfaces (right). The distance field
is updated for each selected surface.

iterations reuse as much data as possible from the single sur-
face selection method. In particular, we show that a single
initial domain integration is sufficient to select even a set
of optimal stream surfaces. Ideally, each stream surface of
this set optimizes the same quality criteria in the subspace re-
stricted by the other surfaces, and surfaces should be distinct
and mutually distant for non-redundant domain sampling.

For surface optimization, this requires efficient evalua-
tion of integration-time restricted quality measures and inter-
surface distance computations. Figure 1 (left) illustrates the
main steps of our extension. We continue to provide details.

4.1 Inter-Surface Distance Estimation

We demand that the stream surfaces s�i describe different
flow characteristics and avoid redundancy. This implies that
surfaces are mutually different in a sense that they should
not get close to each other. Formally, this means that some
lower bound for inter-surface distance is maintained. This
condition is similar but not equivalent to selection methods
for streamlines [JL97] and surfaces [vW93, CH97, EML∗12],
as these methods aim for lines and surfaces that cover the
domain evenly. Compared to these approaches, our lower
bound condition is less restrictive and can yield evenly placed
surfaces as a special case.

We prescribe a lower bound dmin for all pairwise inter-
surface distances and compute an efficient approximation of a
distance field d(x) to all selected surfaces using a Euclidean
distance transform (DT) proposed by Saito and Toriwaki
[ST94]. This is a well-known technique, e.g., in Computer
Vision or Geometry Processing [FCTB08]. The domain is
first partitioned by a regular grid. Then the distance field is
constructed such that each voxel is assigned the distance to a
zero contour given as “obstacle voxels”. In our case, obstacle
voxels are determined by rasterization of the current set of
selected stream surfaces such that each voxel intersected by a
stream surface mesh is marked as an obstacle. The distance
field is then used to decide whether a particular candidate
surface point is valid w.r.t. the distance threshold dmin. The
run-time of the DT method is independent of the number
of surfaces and scales well even for high voxel resolutions.
In practice, we specify the threshold dmin relatively to the

τ0

s

τ1 τ2 τ3 τ4 τ5 τ6 τ7 τ8 τ9

CYLINDER

Ā(τ)

ττ

Ēa(τ)

τ

K̄n(τ)

Figure 3: Quality Measure Segmentation. Stream surfaces s
are partitioned into equidistant segments [τi,τi+1] along inte-
gration time for efficient measure evaluation (top). Our piece-
wise linear approximation of surface-integrated quality mea-
sures on this segmentation (thin •) is close to the exact inte-
gration (•), as shown in the graphs (bottom) for the measures
Ēa(τ)≡ Ēa(τ0,τ), K̄n(τ)≡ K̄n(τ0,τ), and Ā(τ)≡ Ā(τ0,τ) on
the benchmark surface s.

length l of the domain bounding box diagonal. Its value steers
surface density, and we demonstrate the effect of varying dmin
in Section 5.2. In all experiments we use a regular grid with
approximately cubic voxels for the representation of d(x)
with a resolution of 100 voxels for the dimension with the
longest domain extent. Exemplary distance fields visualized
by volume rendering are shown in Figure 2.

While it is possible to discard every stream surface can-
didate that falls below dmin for any point on the surface, we
propose an alternative and more accurate approach that is
based on restriction of integration time. This way only parts
of surfaces will be discarded.

4.2 Integration Time-Restricted Quality Measures

For the selection of multiple stream surfaces, we require the
range of integration times as an additional optimization target.
We extend the quality measures of [MSRT13a] (see Section 3)
such that a restriction of integration times is incorporated in
an efficient manner. This way, all of our selected surfaces
share the same global quality criteria in their restricted search
spaces. This will also guarantee us to select the same globally
optimal surface s�1 among the set of selected surfaces.

Given a surface-integrated quality measure we define an
integration time-restricted version by restricting the full time
range [t0, t1] to [τ0,τ1] with t0 ≤ τ0, τ1 ≤ t1, i.e., only a
smaller surface part centered around the seed curve is con-
sidered. For instance, the average squared flow alignment
measure Ea in (1) becomes

Ēa(τ0,τ1) =
1

Ā(τ0,τ1)

∫ τ1

τ0

∫ s1

s0

e2
a ||ss × st || dsdt (3)

with the restricted surface area Ā(τ0,τ1) =∫ τ1
τ0

∫ s1
s0
||ss × st || dsdt. The restricted average squared

normal curvature K̄n(τ0,τ1) (see (2)) is defined similarly.
The estimation of the restricted time range [τ0,τ1] will be
discussed in Section 4.3.

Note that a restriction of the seed curve range [s0,s1] is not
required. This can always be achieved by changing the path
length and possibly increasing the domain graph resolution.
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τ0

τ0 τ1

τ1

TORNADO

Figure 4: Estimation of Integration Times. For each graph
edge a set of streamlines (•) is integrated that evaluate the dis-
tance field (• isocontour d(x) = dmin = l/10) for the restricted
integration time range [τ0,τ1] of the stream ribbon (•). τ1
is the maximal integration time for which all streamlines at
least dmin-distant to any other surface (•).

Quality Measure Discretization. For optimization, time-
restricted quality measures need to be evaluated for different
[τ0,τ1] values several times. The exact evaluation of the in-
tegrals turns out to be prohibitively expensive as all stream
ribbon surfaces would need to be kept in main memory (see
Section 5.4). Instead, we approximate restricted quality mea-
sures in a piecewise (and memory-efficient) way by exploiting
additivity of integrals: we first partition a triangulated stream
surface into equidistant segments [τi,τi+1] along integration
time. The integrated measure value is computed for each
segment by a single point quadrature at each triangle cen-
ter and saved for each surface segment (see Figure 3 (top)).
For measure evaluation, we determine all segments that are
completely contained in the requested time range [τ0,τ1] and
add their associated integrated value to the result. For par-
tially covered segments only the fractional part is added. This
discretization yields piecewise linear approximations of the
exact integrals Ēa, K̄n, and Ā similar to (3). We compare this
approximation to the exact integrals for a stream surface in
the CYLINDER flow in Figure 3 (bottom). Even for this bi-
furcating surface our approximation is sufficiently close to
the original integrals as approximation errors do not accumu-
late. Note that contrary to this example, for optimization the
restricted measures are generally only evaluated on narrow
stream ribbons that are integrated from graph edges. Using a
fixed number of 25 segments has shown to be sufficient in all
our experiments.

4.3 Integration-based Distance Sampling

To evaluate time-restricted quality measures the restricted
time ranges [τ0,τ1] need to be estimated for each graph edge.
For a given stream ribbon, they describe the part of the sur-
face that has a distance of at least dmin to all other currently
selected stream surfaces. Assuming forward integration only
this corresponds to the problem of determining the longest
forward integration time τ1 ≤ t1 for which d(x)> dmin holds
for all stream ribbon points x (and similarly t0 ≤ τ0 for back-
ward integration).

A straightforward way to estimate τ1 is to evaluate d(x) on
each vertex x of the stream ribbon. However, even for coarsely
tessellated stream ribbons, this results in a large number of
distance field evaluation points that possibly exceed memory

BORROMEAN, k = 12
dmin = 2l/100

k = 0

k = 6

k = 12

Figure 5: Iterative Edge Costs Update. Left: the domain
graph with per-edge graph costs (low •, high •) at different
iterations k combined with the currently selected surfaces.
Right: the final set of stream surfaces S12. In each iteration,
edge costs are updated by the evaluation of quality measures
on integration time-restricted stream ribbons.

restrictions for complex flow fields (see the discussion on
memory footprints in Section 5.4).

Instead, we propose an approximate but more efficient ap-
proach that has shown to be sufficient in all our experiments:
we use a representation on a fixed size parametric grid and
sample each surface ribbon along iso-parametric s = const
surface curves. Algorithmically, this means for each edge
we integrate a fixed number of equidistant streamlines and
save them for further distance sampling. To estimate the
new restricted integration time τ1, we evaluate d(x) on each
streamline vertex x. Figure 4 illustrates this approach: valid
streamline vertices in the integration time range [τ0,τ1] are
marked (•) whereas invalid vertices are colored (•). Our ex-
perience is that the evaluation of ten streamlines per edge
approximate the stream ribbons very well as they are narrow
in general. Note that the additional costs for integration of
these streamlines for each edge are negligible as they can be
computed in parallel along with the initial domain-wide per
edge stream ribbon integration.

4.4 Sets of Optimal Stream Surfaces

The sets of stream surfaces are selected iteratively, and in
each iteration the set of stream surfaces Sk is extended by
the current globally optimal stream surface s̄� in the search
space restricted by Sk. Figure 1 (right) illustrates the opti-
mization while an exemplary iteration is shown in Figure 5.
We compute s̄� in the following way by applying the pro-
posed building blocks of this section: in each iteration, the
distance field d(x) is updated for all surfaces in Sk (see Sec-
tion 4.1). Then we restrict the search space of feasible stream
surfaces by computing new per-edge integration times [τ0,τ1]
of each stream ribbon relative to d(x) and the prescribed
minimal inter-surface distance dmin (see Section 4.3). Stream
ribbon integration time restriction yields reduced integrated
quality measures Ēa, K̄n, and Ā at each edge, which are evalu-
ated using the memory-friendly approximation of Section 4.2.
(Note that the flow orthogonality term Ep of each edge is
unchanged as it is no surface-integrated measure). Graph
edges for which the resulting restricted total ribbon area Ā
vanishes are removed. From hereon we continue to perform
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dmin = 5l/100

dmin = 7l/100dmin = 3l/100CYLINDER, tmid

dmin = l/100

Figure 6: Surface Density Variation. Increasing the minimal
inter-surface distance dmin yields stream surface sets of lower
density. Note that the first selected stream surface (•) is al-
ways equal, whereas the seed curves and integration times of
subsequent surfaces vary for different dmin values.

a surface selection as described in [MSRT13a]: the reduced
quality measures are used to compute new edge costs of the
graph, a global simulated annealing-based optimization se-
lects the optimal simple path of minimal costs in the updated
graph, and a smoothed seed curve c̄? is generated from the
optimized path by a corner cutting scheme [Sab10]. Then s̄?

is integrated from c̄? by respecting the restricted integration
times [τ0,τ1] of each edge of the path. For this, we extended
the stream surface integration method by Hultquist [Hul92]
to support varying integration times along the seed curve.
Finally, s̄? is added to Sk and this procedure is iterated until a
prescribed number k of stream surfaces has been selected or
no more surfaces can be selected for the specified dmin.

5 Results

In this section, we present results for selecting stream surface
sets for different vector fields types. We start with a brief
review of the visualization and a discussion of the parameters
of our approach, and we conclude the section with timings.

5.1 Visualization

We visualize stream surfaces using the IRIS approach by
Hummel et al. [HGH∗10], who use viewing angle-dependent
opacity for well-perceivable semi-transparent stream surface
renderings to minimize occlusion problems. The color of
stream surfaces indicates the selection order as depicted at
the bottom of Figure 7. The (•) surface is always the stream
surface that is selected first, i.e., it coincides with the single
surface selected by [MSRT13a].

5.2 Parameters

Our method inherits the parameters from the single surface
selection method [MSRT13a] and only introduces two addi-
tional intuitive parameters: the number of surfaces k and the
minimum distance threshold dmin. The inherited parameters
are the target mean normal curvature, the domain graph reso-
lution, and the path length and path curvature factor. Unless
noted otherwise, in all experiments we use the default values
suggested by the authors of the original method and refer to
their work for a description of these parameters.

Our approach selects a set of stream surfaces based on
the minimal inter-surface distance parameter dmin. Its value
is inversely proportional to the density of the selected sur-
faces, i.e., increasing minimal distances results in decreasing

surface density. We show an example of this relation in the
CYLINDER flow in Figure 6. Our experiments show that rea-
sonable choices for a variety of data sets are dmin ∈ [l/100, l/5],
where l denotes the length of the domain bounding box di-
agonal. Also, the efficiency of our multiple surface selection
extension (see Section 5.4) allows to fine-tune this value if
required once the domain integration has been performed.
Still, the optimal dmin value certainly depends on feature size
and reflects the desired surface proximity.

Suitable values for the number k of stream surfaces
strongly depend on the flow characteristics, most importantly
on the number of features and feature distribution. As mul-
tiple features can be represented well by a single stream
surface [MSRT13a], the required number of stream surfaces
is not known a priori. Still, in all our experiments the number
k of required stream surfaces tends to be rather low: we use
at most k = 12. More importantly, our user study (see Sec-
tion 6) shows that it is easy for flow visualization experts to
choose k values for representative flow visualizations. As the
computational costs for additional surfaces are also low (see
Section 5.4), we use the following approach: we compute
and present the user a series of — usually ten — surfaces,
which she then can explore interactively for different values
of k. This includes the extension of the set of surfaces as
on-demand computations of additional surfaces works at in-
teractive rates. A feasible alternative is to stop extending the
set once a new surface falls below a minimal area threshold.

5.3 Results: Selected Sets of Stream Surfaces

In the following, we present results for both, analytical and
simulated vector fields. In addition, we would like to refer to
the accompanying video for illustrations of the optimization
algorithm and more extensive visualizations of the results.

Analytical Vector Fields. Simple linear and analytical vec-
tor fields usually do not contain a high number of distinct
features and multiple stream surfaces are not mandatory for
their visualization. Still, they are well-suited to illustrate dif-
ferent properties of our approach, and we show three exam-
ples in Figure 7 (left): the TORNADO flow consists of a single
vortical structure [GRT13] that is represented well by the
globally optimal stream surface [MSRT13a: Fig. 5]. Addi-
tional surfaces do not contribute to the representation of the
feature (cf. Edmunds et al. [EML∗12: Fig. 7]). Rather, they
only provide additional context information near the domi-
nant structure, and in this case distance enforcement leads to
a spatially even distribution of additional surfaces. For the
well-known linear SPIRAL flow we show results that either
maximize or minimize the squared mean normal curvature Kn
in (2) (we maximize Kn in all other examples of this work).
Our distance-aware extension of the global quality measure
optimization yields symmetric results in both cases. In addi-
tion, we use the simple TWOFOCI flow, which has a dominant
planar separating structure between two focus points, as a test
data set in the user study (see Section 6 and the additional
material). Again, our method selects a symmetric result.
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TREFOIL, k = 4
dmin = l/100

SPIRAL, k = 3

SPIRAL, k = 3

CYLINDERSUBLAMINAR
k = 8, dmin = l/100

Selection Orderfirst last

TURBINE, k = 3
dmin = 4l/100

MIXER, k = 3
dmin = 3l/100

TORNADO, k = 4
dmin = 6l/100

Kn → min
dmin = 2l/100

Kn → max
dmin = 5l/100

TWOFOCI, k = 10, dmin = l/100

CYLINDER, tlast
k = 4, dmin = l/100

BÉNARD, k = 4
dmin = 36l/103

Figure 7: Selection Results for Analytical and Simulated Vector Fields. Left: analytical fields are suitable to illustrate properties
of our method: selected sets of stream surface respect the minimal distance bound and represent the major flow features. Surface
color encodes selection order (bottom left), seed curves are colored (•). All examples maximize the squared mean normal
curvature Kn and we also show its minimization for the SPIRAL flow. Right: for simulated fields of varying characteristics we
show the selected stream surface sets Sk. Two time steps of a magnetic flux decay simulation are shown for the TREFOIL flow.

Simulated Vector Fields. More complex simulated flows
usually contain multiple flow features or can be segmented
into multiple disjoint compartment regions. Therefore, these
flows are likely to require multiple stream surfaces for the
uniform representation of the whole flow domain. We present
automatically selected stream surface sets in this type of
flows in Figure 7 (right). Based on the well-known flow
behind a cubic CYLINDER (cf. Edmunds et al. [ELM∗12:
Fig. 14], also shown in Figure 6 for an earlier time step,
see also [CSBI05, BFTW09, ELM∗12, EML∗12, SGRT12,
MSRT13a]) the CYLINDERSUBLAMINAR data set is ob-
tained by removing the laminar flow component. This flow is
used to study the extraction and tracking of multiple vortex
core lines [SWH05, TSW∗05]. Our method selects a set of
stream surfaces that contains both surfaces that are close to
these core lines and surfaces that represent the vortical flow
context. A single stream surface is not sufficient to visualize
all features of the data set and our method captures more
features with uniformly distributed stream surfaces.

The Rayleigh-BÉNARD flow is an example with separate
compartments, which is a simulated data set of fluid motion as
the result of thermal convection (cf. Edmunds et al. [ELM∗12:

Fig. 15]) [WSE05, GRT13]. Again, a single globally selected
stream surface can only partially represent the data set (see
Figure 1). Using only four stream surfaces our method de-
tects a symmetric result in which two outmost vortical flow
compartments are connected symmetrically by two center
flow regions.

The simulation of the outlet area of a hydroelectric turbine
that comprises a flow bifurcation is analyzed in the TURBINE

data set [SGRT12, MSRT13a, MSRT13b]. The initial stream
surface captures both dominant features: the bifurcation and
the only vortical flow structure near the split region — in this
case further surfaces provide a visualization of the remaining
laminar flow context.

The efficiency of a radial fluid mixing device with two
inlets and one outlet at the bottom is studied in the MIXER

flow. Only after the selection of three surfaces all openings
and the main vortical structure in the center are captured by
the set of stream surfaces.

The simulated TREFOIL field represents the time-
dependent field lines of interlocked magnetic flux tubes and
is used to study magnetic energy decay processes like coronal
mass ejections of the sun [CDSB11]. The initial configuration
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Data set (k)
EDGES

(·104)

MEMORY (GB) COMPUTATION TIME (s)

QM SL I DT/it EC/it SA/it T(1) T(k)

BÉNARD (4) 23.0 0.09 1.7 171.9 0.37 1.09 1.8 175.8 185.1
BORROMEAN (6) 35.2 0.14 2.3 283.7 0.47 2.62 2.5 290.0 319.2
CYLINDER (6) 8.1 0.04 1.1 134.3 0.35 0.96 1.1 137.6 149.1
CYLINDERSUBL. (8) 28.1 0.10 2.0 225.3 0.44 2.04 1.9 230.1 263.8
SPIRAL (4) 3.2 0.01 0.3 15.2 0.32 0.23 0.8 16.8 21.4
TWOFOCI (10) 4.1 0.02 0.6 17.3 0.35 0.30 0.8 17.1 23.0
TORNADO (4) 7.3 0.02 1.0 20.3 0.38 0.45 1.1 22.7 29.0
TREFOIL (4) 14.3 0.05 1.3 145.3 0.36 1.09 1.3 148.1 156.3
MIXER (3) 7.8 0.03 1.1 22.7 0.36 0.51 1.1 24.9 31.1
TURBINE (4) 8.8 0.05 1.3 82.7 0.35 1.05 1.2 85.5 93.9

Table 1: Memory Footprints and Timings. For each data
set we show the total number of graph edges, the memory
consumptions of the discretized surface-integrated quality
measures (QM) and streamlines (SL), as well as computa-
tion times of each phase of our approach: ribbon/streamlines
integration (I), distance transform per iteration DT/it, edge
costs update per iteration EC/it, simulated annealing opti-
mization per iteration SA/it, and the total computation time
T(k) for k surfaces. Only the columns with bold titles are
needed to compute additional surfaces.

is a trefoil knot of flux tubes and the two analyzed time steps
show an early and a progressed decayed state. In both time
steps, our method faithfully extracts the three symmetrically
arranged decayed rings together with a centered closed stream
surface representing the mean magnetic field of the surround-
ing rings. A related experiment for three interlocked magnetic
BORROMEAN flux rings [CB11] is shown in Figure 5.

Our results show that the single globally optimal stream
surface (•) often represents the whole flow domain only par-
tially. Hence, the visualization of sets of stream surfaces is
preferable if the flow data contains multiple features or is
subdivided into compartments. The preference of multiple,
non-redundant stream surfaces is also backed by the compara-
tively low additional computational costs, which are required
for the selection of additional surfaces. We analyze the per-
formance of our method in the following section.

5.4 Timings

We measured both, memory requirements and execution
times of each phase of our approach on a Linux PC equipped
with an Intel Core i7-4770K 3.5GHz quad core CPU and
16GB main memory. For the data sets used in this work we
summarize the resulting values together with the number of
graph edges in Table 1. Flow data sets are discretized on
regular grids and resolutions range from 503 cells for the
SPIRAL flow to 2563 cells for the BORROMEAN flow. Note
that in each iteration we only require the fields typeset bold
to extend the set of stream surfaces by an additional surface.
Similar to the single surface selection method, we run the
most time-consuming step of global ribbon and streamline
integration (I) in parallel on multiple CPU cores [MSRT13a].
This step results in a significant amount of ribbon mesh data
(up to 31.2GB for the BÉNARD flow), which we can effec-
tively reduce for multiple stream surface selection by up
to 92% using the proposed quality measure approximation

(QM) and streamline-based distance estimation (SL). Sim-
ilar to [MSRT13a], total execution times T(k) indicate that
our automatic selection method is an offline analysis pro-
cess and provides no instantaneous results. Still, once the
full domain integration is performed, our proposed method
for the selection of additional surfaces turns out to be very
efficient: the distance field update DT, edge cost update with
restricted integration time estimation EC as well as the sim-
ulated annealing-based minimal path optimization SA that
are performed in each iteration are computed at interactive
rates. Hence, by reusing data from the full domain integra-
tion, our multiple surfaces selection times T(k) are very low
compared to single surface selections T(1). Note that the DT
execution time is proportional to distance field resolution
and independent of the number of surfaces, and its memory
requirements are constant. Moreover, as we represent the
surface-integrated quality measures in a very compact form
that does not require vector field sampling for evaluation any-
more, edge cost updates are cheaper to compute compared to
an initial full evaluation [MSRT13a].

6 User Study

To evaluate the effectiveness of our method, we conducted a
user study with 22 participants consisting of CFD experts and
users with a strong visualization background. We compare
two competing stream surface selection techniques: classical
stream surface selection where users place surfaces manually,
and our automatically selected sets where users select suit-
able values for the number k of surfaces. Participants use both
techniques to create visualizations for analytical (TWOFOCI

and TORNADO) and more complex simulated (BÉNARD and
TREFOIL) flows, which are then assessed in terms of how
representative is the visualization, degree of satisfaction, and
ease of use by the users. In summary, the majority of partici-
pants agrees that their visualizations using our automatically
selected stream surfaces are representative for the tested data
sets and that they are satisfied with the results. Visualization
representativeness, user satisfaction, and ease of use using
our approach is higher compared to manual selection while
the required active interaction time is significantly lower for
our method (excluding the unsupervised preprocessing time).
The additional material includes a more detailed study de-
scription and evaluation, and a video of typical participant
interactions.

7 Discussion

Feature extraction generally focuses on a single well-defined
type of flow structure, whereas stream surfaces are applied
in a more general way to convey global flow behavior. These
different visualization goals make both methods orthogo-
nal to each other. Still, we observe a relationship: even
though there is no guarantee that all flow features are rep-
resented by our sets of stream surfaces, it is often possi-
ble to deduce the presence of features from the selected
surfaces. For instance, compare our result for the BOR-
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ROMEAN rings flow shown in Figure 5 (right) with ex-
plicitly extracted distinct characteristic features (see inset):
closed streamlines (•) representing the ring
structures and the dominant diagonal vortex
core line (•, extracted by [SH95]). In this par-
ticular example, torus-like rings are selected
due to their vanishing normal curvature varia-
tion with simultaneous non-vanishing normal curvature. Note
that this argument also holds for other selections, such as the
cylindrical structure around the central vortex core line.

The method by Edmunds et al. [ELM∗12] shares our goal
to automate the task of stream surface selection. We provide
results on identical data sets in Figure 7 for the BÉNARD

and CYLINDER flows. Both methods share several proper-
ties: the algorithms require no feature extraction and use a
uniform space discretization to search for flow-orthogonal
seed curves. Our seed curves are as-orthogonal-as-possible
to the flow whereas the seed curves in [ELM∗12] are flow-
orthogonal by construction. While our method performs a
domain-wide stream surface integration to evaluate surface-
based quality measures, their method uses hierarchical vector
field clustering based on pointwise field properties, such as
magnitude and curvature. This makes their method perform
faster and independent of shape and integration time of the
resulting stream surfaces. While our approach allows to pre-
serve mutual distance of the selection stream surfaces in
order to reduce visual clutter, the local, pointwise approach
in [ELM∗12] does not take this into account.

Referring to the single stream surface selection method
by Martinez Esturo et al. [MSRT13a] that considers surface-
based quality measures, we emphasize that we generalize
their approach towards surface sets. As our discretization of
integration time-restricted quality measures accurately inter-
polates the exact surface integrals of [MSRT13a] (see Sec-
tion 4.2), we are guaranteed to reproduce their single globally
optimal stream surface (see, e.g., the CYLINDER, TORNADO,
or SPIRAL flows in [MSRT13a: Fig. 5]). This way, surfaces
of the automatically selected sets inherit the important prop-
erty of being very similar to stream surfaces that have been
manually selected by domain experts (see also the discus-
sion in [MSRT13a]). In addition, our user study shows that
CFD and visualization experts rate our selection results to be
representative for the tested data sets.

Our method uses a greedy selection of stream surfaces: ev-
ery surface is globally optimal w.r.t. the current search space,
which in turn is determined by restricting distance to all
previously selected surfaces. The convergence of the SA opti-
mization to globally optimal solutions in a given search space
is stated in [MSRT13a]. Our results indicate that this greedy
approach is effective for a variety of different flow data sets.
Still, we cannot guarantee that the selected sets Sk minimize
the accumulated quality measures over all possible sets of k
surfaces. This would require an approach that simultaneously
optimizes for multiple surfaces minimizing surface-based
quality measures and respecting their inter-surface distances,
which is a far more complex problem. We emphasize that

such a simultaneous global optimization does not even exist
for the simpler problem of streamline placement [MLP∗10].
Moreover, greedy algorithms are successfully applied in com-
puter graphics and visualization. For instance, mesh simplifi-
cation algorithms similarly minimize global measures using
a greedy strategy: the result may be a local minimum, but is
accepted as close to optimal.

The presented results indicate that our method yields con-
vincing visualizations for a series of different flow phenom-
ena. Yet, we note that surface-based visualizations in general
are of limited use for highly turbulent flows, which is also a
limitation of our method. Additionally, even a single opaque
stream surface can occasionally exhibit a high amount of oc-
clusion, which can be regarded as a limitation of any stream
surface selection method. Still, we argue that stream surface
selection and rendering are related but different problems:
we have shown that for a variety of data sets a single stream
surface does not suffice in representing all flow features, and
multiple, but potentially occluding, surfaces are required for
a complete representation of the characteristic features of the
flow domain. Whereas we use the IRIS rendering approach
by Hummel et al. [HGH∗10] to minimize occlusion, the more
recent method by Günther et al. [GSM∗14] is an even more
advanced approach for minimization of surface occlusion.

8 Conclusions

In this work, we present a method for the automatic selection
of a set of stream surfaces for which all its surfaces optimize
a global quality criterion. This is in contrast to other selection
approaches that do not evaluate the quality of stream sur-
faces or are limited to the selection of a single stream surface.
Alongside the minimization of stream surface quality mea-
sures our method also considers inter-surface distances and
selects non-redundant stream surfaces that respect a minimal
inter-surface distance bound. We demonstrate the require-
ment of sets of stream surfaces and the effectiveness of our
method for a number of different analytical and simulated
data sets. In a user study with 22 participants, the majority
agrees that our visualizations are representative for the tested
data sets and that they are satisfied with the results.

The automatic selection of time-dependent streak and time
surfaces is an unsolved problem of major importance and a
fruitful direction for future research. As the recent differen-
tial descriptions for streak and time lines [WT10, WHT12]
allow for their fast computation, related approaches to the
one described in this paper may become feasible for streak
and time surfaces, too.

Acknowledgments

We thank Fritz Kemmler for his help with the user study, and
all participants for their time. The CYLINDER data is courtesy
of Simone Camarri and co-workers. The MIXER data set is
courtesy of Richard Hann, ANSYS Inc. The BÉNARD data
set was obtained using the software NaSt3DGP, University of
Bonn. Finally, we thank David Coeurjolly from LIRIS, Lyon
for his distance transform code.

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.



Schulze et al. / Sets of Globally Optimal Stream Surfaces for Flow Visualization

References
[BFTW09] BÜRGER K., FERSTL F., THEISEL H., WESTER-

MANN R.: Interactive streak surface visualization on the GPU.
IEEE TVCG (Proc. Vis) 15, 6 (2009), 1259–1266. (Cited on page
7)

[BWF∗10] BORN S., WIEBEL A., FRIEDRICH J., SCHEUER-
MANN G., BARTZ D.: Illustrative stream surfaces. IEEE TVCG
(Proc. Vis) 16, 6 (2010), 1329–1338. (Cited on page 2)

[CB11] CANDELARESI S., BRANDENBURG A.: Decay of helical
and nonhelical magnetic knots. Phys. Rev. E 84, 1 (2011), 16406–
16416. (Cited on page 8)

[CDSB11] CANDELARESI S., DEL SORDO F., BRANDENBURG
A.: Decay of trefoil and other magnetic knots. In Proc. Advances
in Plasma Astrophysics (2011), pp. 461–463. (Cited on page 7)

[CFM∗13] CARNECKY R., FUCHS R., MEHL S., JANG Y., PEIK-
ERT R.: Smart transparency for illustrative visualization of com-
plex flow surfaces. IEEE TVCG 19, 5 (2013), 838–851. (Cited on
page 2)

[CGC∗12] CAMP D., GARTH C., CHILDS H., PUGMIRE D., JOY
K. I.: Parallel stream surface computation for large data sets. In
Proc. LDAV (2012), pp. 39–47. (Cited on page 2)

[CH97] CAI W., HENG P.-A.: Principal stream surfaces. In Proc.
IEEE Vis (1997), pp. 75–81. (Cited on pages 2 and 4)

[CSBI05] CAMARRI S., SALVETTI M.-V., BUFFONI M., IOLLO
A.: Simulation of the three-dimensional flow around a square
cylinder between parallel walls at moderate Reynolds numbers.
In AIMETA XVII (2005). (Cited on page 7)

[ELC∗12] EDMUNDS M., LARAMEE R. S., CHEN G., MAX N.,
ZHANG E., WARE C.: Surface-based flow visualization. C&G
36, 8 (2012), 974–990. (Cited on pages 1 and 2)

[ELM∗12] EDMUNDS M., LARAMEE R. S., MALKI R., MAS-
TERS I., CROFT T. N., CHEN G., ZHANG E.: Automatic stream
surface seeding: A feature-centered approach. CGF (Proc. Euro-
Vis) 31, 3 (2012), 1095–1104. (Cited on pages 2, 7, and 9)

[EML∗12] EDMUNDS M., MCLOUGHLIN T., LARAMEE R. S.,
CHEN G., ZHANG E., MAX N.: Advanced, automatic stream
surface seeding and filtering. In Proc. TPCG (2012), pp. 53–60.
(Cited on pages 2, 4, 6, and 7)

[FCTB08] FABBRI R., COSTA L. D. F., TORELLI J. C., BRUNO
O. M.: 2D euclidean distance transform algorithms: A compara-
tive survey. ACM Comput. Surv. 40, 1 (2008), 2:1–2:44. (Cited
on page 4)

[GRT13] GÜNTHER T., RÖSSL C., THEISEL H.: Opacity opti-
mization for 3D line fields. ACM TOG (Proc. SIGGRAPH) 32, 4
(2013), 120–120. (Cited on pages 6 and 7)

[GSM∗14] GÜNTHER T., SCHULZE M., MARTINEZ ESTURO J.,
RÖSSL C., THEISEL H.: Opacity optimization for surfaces. CGF
(Proc. EuroVis) 33, 3 (2014), (to appear). (Cited on pages 2 and 9)

[HGH∗10] HUMMEL M., GARTH C., HAMANN B., HAGEN H.,
JOY K.: Iris: Illustrative rendering for integral surfaces. IEEE
TVCG (Proc. Vis) 16, 6 (2010), 1319–1328. (Cited on pages 2, 6,
and 9)

[Hul92] HULTQUIST J. P. M.: Constructing stream surfaces in
steady 3D vector fields. In Proc. IEEE Vis (1992), pp. 171–178.
(Cited on pages 2 and 6)

[JL97] JOBARD B., LEFER W.: Creating evenly-spaced stream-
lines of arbitrary density. In Proc. EG VisSci (1997), pp. 45–55.
(Cited on page 4)

[KGV83] KIRKPATRICK S., GELATT C. D., VECCHI M. P.: Op-
timization by simulated annealing. Science 220, 4598 (1983),
671–680. (Cited on page 3)

[KKKW05] KRÜGER J., KIPFER P., KONDRATIEVA P., WEST-
ERMANN R.: A particle system for interactive visualization of 3D
flows. IEEE TVCG 11, 6 (2005), 744–756. (Cited on page 2)

[LvWJH04] LARAMEE R. S., VAN WIJK J. J., JOBARD B.,
HAUSER H.: ISA and IBFVS: Image space based visualization of
flow on surfaces. IEEE TVCG 10, 6 (2004), 637–648. (Cited on
page 2)

[MLP∗10] MCLOUGHLIN T., LARAMEE R. S., PEIKERT R.,
POST F. H., CHEN M.: Over two decades of integration-based, ge-
ometric flow visualization. CGF 29, 6 (2010), 1807–1829. (Cited
on pages 2 and 9)

[MSRT13a] MARTINEZ ESTURO J., SCHULZE M., RÖSSL C.,
THEISEL H.: Global selection of stream surfaces. CGF (Proc.
EG) 32, 2 (2013), 113–122. (Cited on pages 1, 2, 3, 4, 6, 7, 8,
and 9)

[MSRT13b] MARTINEZ ESTURO J., SCHULZE M., RÖSSL C.,
THEISEL H.: Poisson-based tools for flow visualization. In Proc.
IEEE PacificVis (2013), pp. 241–248. (Cited on pages 2 and 7)

[PS09] PEIKERT R., SADLO F.: Topologically relevant stream
surfaces for flow visualization. In Proc. SCCG (2009), pp. 43–50.
(Cited on page 2)

[Sab10] SABIN M.: Analysis and Design of Univariate Subdivision
Schemes. Springer, 2010. (Cited on page 6)

[SGRT12] SCHULZE M., GERMER T., RÖSSL C., THEISEL H.:
Stream surface parametrization by flow-orthogonal front lines.
CGF (Proc. SGP) 31, 5 (2012), 1725–1734. (Cited on pages 2
and 7)

[SH95] SUJUDI D., HAIMES R.: Identification Of Swirling Flow
In 3-D Vector Fields. Tech. rep., MIT, 1995. (Cited on page 9)

[ST94] SAITO T., TORIWAKI J.-I.: New algorithms for euclidean
distance transformation of an n-dimensional digitized picture with
applications. Pattern Recognition 27, 11 (1994), 1551–1565.
(Cited on page 4)

[SWH05] SAHNER J., WEINKAUF T., HEGE H.-C.: Galilean
invariant extraction and iconic representation of vortex core lines.
In Proc. EuroVis (2005), pp. 151–160. (Cited on page 7)

[TSW∗05] THEISEL H., SAHNER J., WEINKAUF T., HEGE H.-
C., SEIDEL H.-P.: Extraction of parallel vector surfaces in 3D
time-dependent fields and application to vortex core line tracking.
In Proc. IEEE Vis (2005), pp. 631–638. (Cited on page 7)

[TWHS03] THEISEL H., WEINKAUF T., HEGE H.-C., SEIDEL
H.-P.: Saddle connectors - an approach to visualizing the topo-
logical skeleton of complex 3d vector fields. In Proc. IEEE Vis
(2003), pp. 225–232. (Cited on page 2)

[vW93] VAN WIJK J. J.: Implicit stream surfaces. In Proc. IEEE
Vis (1993), pp. 245–252. (Cited on pages 2 and 4)

[WHT12] WEINKAUF T., HEGE H.-C., THEISEL H.: Advected
tangent curves: A general scheme for characteristic curves of flow
fields. CGF (Proc. Eurographics) 31, 2 (2012), 825–834. (Cited
on page 9)

[WSE05] WEISKOPF D., SCHAFHITZEL T., ERTL T.: Real-time
advection and volumetric illumination for the visualization of 3D
unsteady flow. In Proc. EuroVis (2005), pp. 13–20. (Cited on
page 7)

[WT10] WEINKAUF T., THEISEL H.: Streak lines as tangent
curves of a derived vector field. IEEE TVCG (Proc. Vis) 16, 6
(2010), 1225–1234. (Cited on page 9)

[WTHS04] WEINKAUF T., THEISEL H., HEGE H.-C., SEIDEL
H.-P.: Boundary switch connectors for topological visualization
of complex 3D vector fields. In Proc. VisSym (2004), pp. 183–192.
(Cited on page 2)

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.


