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Figure 1: The input to our method is a vector field and a user-defined set of stream line segments as a query pattern (• left). We
find all “similar” occurrences in a location, translation, and scale-invariant way (• middle). A representative of each cluster is
shown on the right.

Abstract
We propose a method that allows users to define flow features in form of patterns represented as sparse sets
of stream line segments. Our approach finds “similar” occurrences in the same or other time steps. Related
approaches define patterns using dense, local stencils or support only single segments. Our patterns are defined
sparsely and can have a significant extent, i.e., they are integration-based and not local. This allows for a greater
flexibility in defining features of interest. Similarity is measured using intrinsic curve properties only, which enables
invariance to location, orientation, and scale. Our method starts with splitting stream lines using globally-consistent
segmentation criteria. It strives to maintain the visually apparent features of the flow as a collection of stream line
segments. Most importantly, it provides similar segmentations for similar flow structures. For user-defined patterns
of curve segments, our algorithm finds similar ones that are invariant to similarity transformations. We showcase
the utility of our method using different 2D and 3D flow fields.
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1 Introduction

The visualization and analysis of vector fields is of ma-
jor importance for various scientific disciplines. Among
the different classes of vector field visualization techniques,
geometry-based techniques are well-established [MLP∗10].
They rely on integral curves such as stream lines representing
integrated flow behavior.

However, line-based flow visualizations face certain chal-
lenges: for instance, if applied to very complex data sets, they
can quickly lead to cluttered visualizations. In particular, this
is a problem for 3D flows. Figure 1 shows such an example,
where the gray stream lines of the 3D vector field occlude
each other to an extent that renders the entire visualization

almost illegible. The possibly existing structures within this
field are lost due to visual clutter.

Furthermore, a stream line is a domain-wide integrated
entity, but very often not all of its parts are equally important:
for some applications, the part of a stream line in the vicinity
of a vortex or critical point is more important than the part
running through a region of laminar flow. However, ultimately
the definition of what constitutes a “flow feature” depends
on the specific application and the visualization target of the
domain expert.

The method presented in this paper empowers the user
to define complex flow features. We propose an example-
based pattern retrieval approach: users are able to specify
interesting flow features as patterns that are constructed of
stream line segments, i.e., parts of stream lines. In contrast
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to previous work, our method supports patterns represented
by multiple line segments, which increases the flexibility
and expressiveness of the specified patterns. This way, it is
possible to specify even complex flow patterns such as the one
shown in Figure 1. Patterns are matched with the vector field
and successful matches of the example pattern are presented
to the user. We formulate the matching to be invariant to
similarity transformations, such that matched patterns are
found independently of their location, orientation, or scale.
In addition, pattern occurrences can be found in the same
data set, in a different time step of the same data set, or in a
different data set.

At its core, our formulation of flow pattern retrieval re-
quires suitable steam line segmentations as well as measures
for segment similarity, for which we propose possible solu-
tions. Suitable stream line segmentations should allow the
convenient selection of flow feature regions. We relate flow
features to flow curvature, such that segment boundaries are
naturally found at minima of curvatures. In addition, segmen-
tations need to be consistent along multiple scales to allow
scale-invariant pattern retrieval. We propose a new stream
line segmentation scheme that is based only on intrinsic curve
properties and fulfills all of these requirements. In addition,
our stream line segmentation scheme and similarity estimates
are valuable on their own rights and can also be use, e.g., for
flow clustering applications.

Section 2 reviews approaches that are most related to our
work. In the following two sections, we present details of our
two main contributions: the consistent intrinsic stream line
segmentation and segment similarity estimation (Section 3)
and the segmentation-based flow feature pattern retrieval
(Section 4). Section 5 validates our algorithm through several
examples. Section 6 examines the efficiency of the proposed
method by conducting several experiments and we discuss
properties of our approach in Section 7.

2 Related Work

Stream line-based flow visualization is a well-research
concept in flow visualization. A thorough review is beyond
the scope of this paper and we refer to the recent survey by
McLoughlin et al. [MLP∗10] for an overview. In our work,
we propose a new segmentation-based approach for intrinsic
stream line similarity estimation that we apply to the problem
of flow pattern search.

Stream Line Similarity and Clustering. A variety of ap-
proaches for similarity estimation of stream lines, in partic-
ular, and curve sets, in general, is known in the literature.
Estimations generally differ in the consideration of extrinsic
or intrinsic curve properties and in the discretization of these
estimates. Similarities are most often required for clustering
of, e.g., DTI fiber bundles [CZCE08,JDL09]. In the flow visu-
alization context, Rössl and Theisel [RT12] perform spectral
stream line clustering based on lower-dimensional embed-
dings guided by extrinsic stream line similarity estimates,

e.g., Hausdorff distances. Similarly, Brun et al. [BKP∗04]
also measure similarity in a transformed feature space. Li
et al. [LWS13] propose a bags-of-feature method encod-
ing distributions of intrinsic stream line properties and spa-
tial relationships for similarity computations. McLoughlin
et al. [MJL∗13] use binned intrinsic curve properties and
propose stream line similarities estimations at different res-
olutions. None of these methods considers shape dependent
stream line segmentations for increased accuracy of esti-
mated similarities. Distribution-based stream line segmenta-
tions and dynamic time warping-based stream line similarity
estimations are proposed by Lu et al. [LCL∗13]. Whereas
their approach compares whole segmented stream lines in a
scale-dependent way, we propose to measure scale-invariant
similarity of better distinguishable stream line segments in-
stead. Given a query curve, all stream line similarity esti-
mates [RT12, LWS13, MJL∗13, LCL∗13] enable users to re-
trieve single similar stream lines in a straightforward way.
Compared to similarity estimations of single curves, the prob-
lem of finding more complex flow patterns turns out to be
more complex.

Flow Pattern Search. Flow patterns are generally consid-
ered as more complex distinguishable flow structures that
are usually defined as query patterns by the user. Flow struc-
tures are either defined directly in terms of stencils of vector
field quantities or by geometric structures like integral curves,
partial integral curves, or user-sketched curves. Ebling and
Scheuermann [ES03, ES06] and Heiberg et al. [HEWK03]
apply convolution with dense idealized filter masks to detect
predefined flow patterns. Schlemmer et al. [SHM∗07] define
moment-invariant pattern descriptors by dense circular vec-
tor field stencils for retrieval of flow patterns. Recently, this
approach is extended by Bujack et al. [BHSE14] to include
moment normalization to obtain descriptors for pattern re-
trieval of different scales and orientations. Both methods are
restricted to 2D flows only. Single user sketched 2D curves
are used as query patterns by Wei et al. [WWYM10], for
which similar occurrences are retrieved from 3D line fields.
As the query sketch represents a projection of the query curve,
retrieval might be ambiguous for 3D stream lines. They per-
form no segmentation and similarity is measured by string
edit distances. More recently, Tao et al. [TWS14] also pro-
pose a retrieval method based on string edit distances. Stream
lines are segmented into distinctive regions to which char-
acters of a data-dependent alphabet are assigned to enable
partial stream line matching of consecutive segments.

None of these methods allows the definition of flow fea-
ture patterns in form of multiple stream lines or stream line
segments. We now continue to present our intrinsic stream
line segmentations to approach this problem.

3 Intrinsic Stream Line Segmentation

Our approach is motivated by the observation that long
stream lines often pass through several mutually distinct
flow features of the underlying vector field, e.g., through
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multiple vortical regions. An independent analysis and re-
trieval of these distinct features is not possible by considering
whole stream lines. Instead, our method considers spatially
restricted parts of stream lines in form of shorter stream line
segments, which can be combined to form sets of segments
that represent flow feature patterns.

Notation. We make use of the following formal concepts:
let v(x) denote a steady two or three dimensional vector
field. We consider its stream lines as parametric curves
c(t) = x0 +

∫ t
0 v(c(u))du, which are sampled by a curvature-

based importance sampling process (see [WT02]), and later
sparsified by discarding up to 90% redundant curves by check-
ing the Hausdorff distance of any two curves (see [RT12]).
We partition stream lines c into disjoint stream line segments
si(t), and denote the length of si by li.

3.1 Globally Consistent Segmentation of Stream Lines

We identify three requirements a globally consistent seg-
mentation has to satisfy for our application: first, a segmen-
tation should be feature preserving in that all segments shall
preserve the important features of the given set of curves.
In general, long and sharp arcs of stream lines are consid-
ered to be important and significant curve features, while
short and straight curves are less important. Second, a seg-
ment should be distinct enough to describe a complete fea-
ture. For instance, a circle should not be separated into two
semi-circles. The third property requires a segmentation to
be consistent in that segments, which describe similar flow
features, should have similar shapes. This implies that the
segmentation should be invariant to translation, rotation, scal-
ing, and reflection, i.e., invariant to similarity transformations.
These three properties are illustrated in Figure 2. Our segmen-
tation only relies on stream line curvatures κ2/3(t). Although
2D and 3D curve curvatures are defined differently, i.e., κ2
are signed, while κ3 are always positive, our segmentation
scheme supports 2D and 3D curves in a unified way. Stream
line segmentation proceeds in two phases, curvature-based
splitting and subsequent segment merging, and we continue
to describe both in more detail.

Segment Splitting. Both curvature estimations κ2 and κ3
differ in their signedness. Hence, we consider absolute local
curvatures κ̂(t) = |κ2/3| for a unified stream line segmenta-
tion scheme that is applicable for both two and three dimen-
sional stream lines. Vector field features are usually coupled
to high absolute stream line curvatures (see, e.g., [MJL∗13]).
Therefore, to obtain feature-preserving and distinct segmen-
tations, points of absolute local curvature minima that bound
these high curvature regions are candidates for possible seg-
ment boundaries. We call these segments bounded by con-
secutive absolute local curvature minima minimal segments,
which are the initial building blocks of the final segmentation
and will not be split further.

(a) (b) (c)

Figure 2: Curve Segmentation. Our segmentation scheme
splits stream lines in a globally consistent way at (•) (alter-
native, less suited split locations are colored as (•)). Shown
examples illustrate different properties of our segmentation,
i.e., feature preservation (a), feature distinction (b), and seg-
mentation consistency w.r.t. location, orientation, and scale
(c).

(a) (b)

Figure 3: Segment Merge Criteria. Pre-merge segment
boundaries are colored (•), and two different average seg-
ment orientations are colored (•) and (•). (a) A pair of seg-
ments is mergeable if they both have similar average orien-
tations. (b) A triplet of segments is mergeable if the center
segment (•) has a low average total curvature compared to
its neighboring segments, which have similar average orien-
tations.

Segment Merging. We merge neighboring segments based
on two segment properties: total segment curvature and aver-
age segment orientation. Both properties are scale-invariant.
The total segment curvature κ̂i is given by

κ̂i =
∫ ti+1

ti
κ̂ ||ċ|| dt . (1)

Along each segment, the orthonormal Frenet-Serret frames
(t(t),n(t),b(t)) are given by the tangent, normal, and bi-
normal directions, respectively. We observe that along a min-
imal segment the variation of bi-normal directions is usually
small. Therefore, we assign each segment an average orien-
tation b̄i based on its average bi-normal direction.

Our algorithm for merging of segments consists of growing
segments of low total curvature with neighboring segments,
if they are merge-compatible. Compatibility is tested in two
phases based on two criteria: first, two neighboring segments
are mergeable if they have similar average orientations, i.e., if
the angle αi =](b̄i, b̄i+1) is smaller than a user-specified up-
per bound α. Second, if one segment has a low total curvature,
i.e., κ̂i < β for a user-specified upper bound β, it is mergeable
with both of its neighboring segments if these two segments
have similar average orientations w.r.t. α. Figure 3 illustrates
two examples of the criteria. The merging algorithm itera-
tively processes segments based on a priority queue that is
ordered by the total segment curvature such that segments of
lowest curvature are processed first.
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CYLINDER

Figure 4: Similarity-based Clustering. Using the consistent
segmentation of the CYLINDER flow (top), a clustering of
segments based on pairwise intrinsic segment similarities
is computed (bottom). The shown three clusters consist of
approximately laminar flow segments (•), highly curved seg-
ments (•), and circular flow segments (•).

3.2 Intrinsic Similarity of Stream Line Segments

Based on our consistent curve segmentation scheme, we
propose a general scale-invariant method for intrinsic curve
segment comparison.

First, we discretize the continuous intrinsic curve proper-
ties like curvatures along each segment into n > 0 uniformly
sized bins. The parameter n steers the profile resolution and
accuracy. In all our experiments, we observe that a value
of n = 40 is usually sufficient to enable accurate segment
comparison, e.g., for pattern retrieval. For comparability, we
scale-normalize each profile by the curve lengths li.

To measure the intrinsic similarity of a pair of curve seg-
ments, we employ hEMD [PW09], which is a generalization
of the Earth Movers Distance (EMD), for the comparison
two scale-normalized profiles. hEMD is a cross-bin measure
that is more robust w.r.t. local deformations and also a well-
defined metric for our setting of unequal total profile sums.

In order to obtain similarity transformation invariance for
2D curves, we need to compute the minimum of four distance
measures, i.e., two for inverting the curve traversal order, and
two for flipping the sign of the curvature. For 3D segment
similarity estimation, we combine differences in unsigned
curvature κ3 and torsion τ as dκ3 +wτ dτ of individual hEMD
profile distances in curvature dκ3 and torsion dτ. A weight
parameter wτ < 1 is chosen to reduce the influence of torsion
to the final similarity estimation. Similar to the 2D case,
to evaluate the similarity of two 3D segments, four hEMD
evaluations are required, i.e., two for inverting the traversal
order, and two for flipping the sign of the torsion.

4 Pattern Search

In this section, we propose an example-based flow pattern
search approach for the detection of similar flow feature
patterns given a query pattern. We formulate it independently
of the curve dimension and the algorithm is applicable for
both 2D and 3D curves.

4.1 Pattern Definition

Patterns P⊂ S are given by a subset of segments from the
set of all stream line segments S. Example query patterns are

(a) (b) (c)

Figure 6: Pattern Retrieval Overview. (a) A flow feature pat-
tern is a set of user-selected segments (•) with one distin-
guished root segment (•). (b) For global alignment, segments
similar to the root segment are found using scale-invariant
intrinsic similarity (• left), then all pattern segments are
transformed to their vicinity by a fitted similarity transforma-
tion (right). (c) For local alignment, all transformed pattern
segments are matched with the local data segments to detect
matched patterns (•).

selected by the user to define flow features for pattern retrieval.
Usually, a flow feature pattern consists of distinctive elements
of different types of flow features. For instance, a saddle
point surrounded by two vortices can be described using the
following stream line segments: two arcs coupled with two
circular stream lines at either side, see Figure 6. Intrinsically
similar occurrences of the pattern can be retrieved from other
parts of the domain, from other points in time, or even from
other data sets.

4.2 Pattern Retrieval

Given a query pattern, we search for differently scaled
and geometrically compatible pattern locations in the search
space of all segments. Pattern retrieval consists of two con-
secutive global and local phases. The procedure is illustrated
in Figure 6 and we continue to present its details.

Global Pattern Alignment. Global pattern alignment re-
quires the localization of candidate patterns and the compu-
tation of the similarity transformations that align the query
pattern with candidate matches.

We define the segment of highest end point distance as the
root segment r(s) ∈ P to perform similarity computations.
For pattern search in 3D, we additionally require the root
segment to have non-vanishing curvature. Using the root seg-
ment, we find a set Q of similar segments q(s) ∈ Q⊂ S using
the scale and orientation-invariant segment similarity of Sec-
tion 3.2. To increase the matching performance, for a given
root segment, users can reduce the size of Q by prescribing a
percentage p of the considered range of similarity values. In
our experiments, p = 10% turns out to be sufficient. Given
two similar segments r and q, we resample the shorter curve
to have the same number |r| = |q| = m of vertices as the
longer one. The optimal alignment qk = cRrk + t consisting
of three fitted similarity transformation components, i.e., a
translational part t, a rotational part R, and a scaling factor
c, is then computed by the technique proposed by Arun et
al. [AHB87].
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CYLINDER

Figure 5: Pattern Retrieval in the CYLINDER Flow. In a single time step of the flow behind a circular CYLINDER obstacle (not
shown) a flow pattern P (•) is selected. Our pattern retrieval evaluates the geometric matching costs e(M) of local candidate
occurrences of the pattern at different locations, orientations, and scales (top). Clustering of locally similar candidate occurrences
yields representative and distinctive pattern matches (bottom, differently colored). The consistent segmentation of this flow is
shown in Figure 4.

Local Pattern Matching. Consecutively, in the local pat-
tern alignment step, each geometrically similar segments are
considered and a pattern match is found if every segment can
be matched to a compatible segment.

Note that, for local pattern matching, we perform an extrin-
sic similarity estimation, as for pattern search extrinsically
matching segment configurations are required: for two seg-
ments p and q with vertices pi and q j (not necessarily of
equal number), we measure extrinsic shape similarity using
the symmetric Chamfer distance ec(p,q) given by

ec(p→ q) = 1
|p|∑i

min
j

∣∣∣∣pi−q j
∣∣∣∣ (2)

ec(p,q) = max(ec(p→ q), ec(q→ p)) . (3)

The Chamfer distance is successfully applied for other shape
matching problems [Gav07] and measures the average sum of
closest point distances. To allow slight variations in segment
shape and position, for pattern matching we use the segment
matching cost function

e(p,q) = ec(p− p̄,q− q̄)+we ||p̄− q̄|| (4)

given as a combination of mass centered extrinsic shape simi-
larity and segment distance expressed by the distance of the
respective centers of mass p̄ and q̄. The weight we allows
to balance between the required shape similarity and the al-
lowed segment distance and it can be choose to be we = 1 for
equal weighting.

To locally match a pattern to a candidate match position, let
P′ denote the set of segments transformed by the fitted simi-
larity transformation. The set of candidate match segments
C⊂ S of the underlying flow are all the segments for which
at least a single vertex is inside the transformed bounding
box of the pattern. The set of matched segments is computed
as the set

M=
{

q̂i
∣∣ ∀p′j ∈ P

′ : q̂i = arg min
qi∈C

e(p′j,qi)
}

(5)

of most similar candidate segments to the transformed pattern
segments. The total pattern matching cost e(M)=∑i e(p′i , q̂i)
is then given by the sum of individual minimal segment
matching costs.

As a single flow feature should only be represented by a
single matching pattern, we cluster multiple close matchings
in a straightforward way by clustering the centers of mass of
their bounding boxes.

5 Validation

In this section, we use the well-known 2D flow behind a
CYLINDER that develops a von Kármán vortex street behind
an obstacle to validate our algorithm.

In Figure 4 (bottom), we illustrates a hierarchical clustering
of all the stream line segments of the CYLINDER Flow based
on pairwise intrinsic segment similarities. The consistent
segmentation of this flow is shown in Figure 4 (top). For clus-
tering, we uses Ward’s minimum variance algorithm [War63].
All the segments are grouped into three clusters: laminar
flow segments, highly curved segments, and circular flow seg-
ments. Note that intrinsically similar segments are grouped to
clusters at different scales, which shows the scale-invariance
of our similarity estimation.

In Figure 5, we apply our pattern retrieval approach to a
single time step of the CYLINDER flow. For a given user-
selected flow feature pattern P, we show the resulting pattern
matching costs e(M) in the upper part. Pattern matching
costs in the vicinity of the original pattern are high due to the
similarity of the surrounding repetitive flow features at similar
scale. Matching costs slightly increase away from the obstacle
due to decreased extrinsic similarity to P. The bottom figure
shows the distinctively clustered pattern representatives after
aggregating close matchings. The repetitive flow feature is
well represented in the matching results.

In another validation example, we apply a pattern from
one time step to all other time steps. We demonstrate this in
Figure 7: given the pattern P selected in one time step of the
previous CYLINDER example (Figure 5), we match it to all
occurrences at every time step of the time-dependent CYLIN-
DER flow. Shown are the matched patterns in all following
time steps, which we visualize in space-time domain. The
result is consistent with the single time step result and the
individual pattern evolution is well-represented. Note that
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CYLINDER

Time

Space

Figure 7: Time-dependent Pattern Search. For the time-
dependent 2D CYLINDER flow, we perform pattern retrieval
for the pattern P selected in the time-step shown in Figure 5.
The consistent matching results are visualized in space-time
domain.

P

BOUSSINESQ

r

Figure 8: BOUSSINESQ Pattern Search. The BOUSSINESQ

flow represents the advective mass transport induced by a
circular heat source (•). In the segmented flow (left), we
search for occurrences of the selected pattern P (•, bottom
right). For the root segment r (bottom right), the middle
image shows the most similar segments of the data set that
are used for matching. The pattern is matched to two different
occurrences (right, differently colored) at different locations,
orientations, and scales.

this example does not focus on tracking of individual seg-
ments over time. Rather, it demonstrates the ability of our
approach to match the extrinsic configuration of a consis-
tently segmented pattern from one time step to any other time
step.

6 Results

We continue to present results of our pattern retrieval ap-
proach in this section. In Figure 8, we show pattern search
results for the more complex simulated 2D BOUSSINESQ

flow representing the Boussinesq approximation applied to

P

BOUSSINESQ

Figure 9: Pattern Search with External Pattern. In the
BOUSSINESQ flow, we search for the pattern P (bottom right)
that is given by two external segments from the CYLINDER

flow shown in Figure 5. The pattern is matched to nine oc-
currences in the BOUSSINESQ flow (differently colored) at
various different nested locations, orientations, and scales.

solve for the flow generated by a heated cylinder. We show
both the segmentation result and the most similar segments to
a given root curve of the user selected pattern in the same data
set. The flow pattern consists of two vortical regions that are
separated by a saddle-like structure. In the same data set, two
occurrences are detected. They are matched at very different
scales, illustrating the scale-invariance of our approach.

In the same date set illustrated in Figure 9, we exemplify
the use case of matching with externally defined patterns:
using the 2D flow pattern defined by consistently segmented
segments in the CYLINDER flow of Figure 5, we detect nine
matching occurrences in the BOUSSINESQ flow. Note that
matchings are found at various different locations, orientation,
and scales. As long as a query pattern consists of consistently
segmented segments it can be used as an external pattern in
our method. In particular, external patterns need not conform
to the scale of the data set due to the invariance to similarity
transformations of our method. In addition, this result demon-
strates that our approach also retrieves nested matches, i.e.,
pattern occurrences at different scales but at same locations.
Nested patterns can be interpreted to give a multi-scale rep-
resentation of a particular flow pattern. They are supported
by our method due to the sparseness of our pattern defini-
tion. Note that matching of nested patterns is usually not
supported by pattern matching approaches that are defined by
dense stencils [ES06, HEWK03, SHM∗07, BHSE14], as this
would require self-similar stencils.

In Figure 1, we illustrate the application of our approach
to 3D pattern retrieval in the electrostatic field around a BEN-
ZENE molecule [SS96]. The specified complex pattern is
matched at six accumulation points corresponding to the six-
fold molecule symmetry. This example demonstrates that for
3D flows matched patterns are also detected in a rotational-
invariant way by our method.

The DELTAWING flow in Figure 10 is a simulated field
around a triangle-shaped airplane, courtesy of Markus Rütten
(DLR). By selecting a straight stream line segment that has
a spiraling segment at the tip of one of the two vortices as
the flow feature pattern, our method detects similar stream
lines that enter one of both vortices. We only show segments
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Figure 11: 3D Pattern Search in the BÉNARD Flow. For the user-selected pattern P (• left) in the Rayleigh-BÉNARD convection
flow, the pattern matching costs (middle, low costs matches are rendered with thicker lines) indicate eight locations of increased
pattern occurrences. All eight distinctive pattern matches are found by clustering these matches for the retrieval result (right).

DELTAWING

Figure 10: 3D Pattern
Search in the DELTAWING

Flow. The selected pattern
P (•) consists of a straight
segment combined with
spiraling segment at the
tip of one vortex. Segments
with small matching costs
(•) are detected close to
similar regions entering
both vortices.

Data set |L| |S| |Q| |P| SIMI (s) PSEARCH (s)

CYLINDER 55 400 400 2 0.6 0.3
BOUSSINESQ 172 473 154 4 0.9 1.7
BENZENE 7832 9116 4019 6 162 137
BÉNARD 266 8747 547 2 57 119
DELTAWING 302 1700 1646 2 12 1.6

Table 1: Timings. For each data set, we list the number in-
tegrated stream lines |L|, number of total segments |S|, the
number of considered match candidates |Q|, the number of
pattern segments |P|, root curve intrinsic similarity compu-
tation (SIMI) as well as the local and global phases of the
pattern search with match clustering (PSEARCH).

having this characteristic and color code their similarity to
the pattern.

The Rayleigh-BÉNARD flow in Figure 11 is a simulated
data set of fluid motion as the result of thermal convection of
a heated and cooled boundaries, obtained using the software
NaSt3DGP (University of Bonn). The selected pattern con-
sists of a vortical part with an orthogonally aligned segment.
For each segment of the search space the middle image shows
the individual pattern matching costs, which results in eight
locations of increased pattern occurrences. Segment clus-
tering results in eight representative and distinctive pattern
matches.

Table 1 summarizes the used number of segments and
processing time of all examples of this section. Processing
times were measured with a parallel implementation on an

Intel Core i7-4770K 3.5GHz quad core system. Our consis-
tent stream line segmentation is a very efficient operation
even for a high number of stream lines: for all tested data
sets, segmentation time is less than 0.03 seconds. Among
all operations, the similarity computation of the root curve
to the search space segments is one of the most expensive
steps of our method. In fact, the costs are not unexpected,
as this operation effectively corresponds to a global and
scale-invariant segment matching. Note that other methods
evaluating distances between discretized intrinsic property
profiles [MJL∗13, LCL∗13] have similar overall complexity.
Slightly higher runtimes are caused by our usage of the more
general and accurate, but also more expensive hEMD distance
estimation, if compared to standard X2 or EMD distances.
Similar to similarity estimations, pattern search performance
depends on the number of tested segments and their vertex
count, which we found to be highly data set-dependent. Still,
all operations can be parallelized in a straightforward way for
increased performance.

7 Discussion

In our approach, we design the retrieval of flow feature
patterns based on segmentations of stream lines. Compared
to existing methods, this has a number of implications w.r.t.
stream line similarity estimation and flow pattern matching.

For stream line similarity estimation, it leads to ill-posed
similarity estimations if curves of different segment number
are compared, e.g., a single-arc curve with a multi-arc curve.
But in our work we emphasize the importance of only com-
paring compatible curve segments that usually represent a
single dominant region of maximal curvature. On one hand,
this restricts the spatial extend of the comparable entities, on
the other hand, similarity estimations become more reliable.
In fact, our method explicitly supports the definition of sparse
sets of stream line segments as query patterns. This increases
the flexibility of pattern definition and enables a greater range
of possible pattern retrieval applications, e.g., the transfer of
patterns to external data sets or the matching of nested flow
patterns.

Limitations and Outlook. Although stream line segmenta-
tion enhances the reliability of segment similarity compu-
tations, we identify a number of related drawbacks. First,
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as we define flow patterns as sets of stream line segments,
users must stick to these segments when defining patterns.
Artificially designed patterns will often not match properly.
Usually this is unproblematic, since segments correspond to
intuitive and distinctive flow regions due to the consistent
curvature-based segmentation. However, certain types of flow
patterns are harder to describe this way: an example is the
combination of a vortical region with a straight curve of lim-
ited extend in its vicinity, because straight curves will not
be segmented into individual segments due to the absence of
curvature. It is an interesting direction for further research
to identify alternative curve segmentations, e.g., hierarchical
multi-resolution schemes for segmentation and partial match-
ing approaches, which could alleviate this limitation. Since
our algorithm is purely geometric, another interesting future
direction is to apply it to other types of curves such as streak
and time lines [WHT12], or fiber tracts [CZCE08, JDL09].

8 Conclusion

In this work, we presented a novel approach to pattern
retrieval in flows that is based on a consistent stream line seg-
mentation. Flow patterns are defined by sparse sets of stream
line segments. This provides flexibility for their definition.
They are matched independently of position, location, and
scale to the same data set, a different time step, or even a
different data set. We demonstrate the pattern retrieval effec-
tiveness on a number of 2D and 3D data sets. Efficient pat-
tern matching is enabled by a new stream line segmentation
scheme that is solely based on intrinsic curve properties and
segments intrinsically similar stream lines in a scale-invariant
and feature-consistent way. Based on this segmentation, in-
trinsic segment similarity estimates are proposed that are
invariant w.r.t. rigid or similarity transformations.
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